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Preface

The purpose of this effort was to simulate simple,

biological learning behavior using an artificial neural

network to imitate an animal nervous system. The successful

application of unsupervised training in this manner could

result in a new era of machine control design.

Although the test results were not as promising as I

had hoped, the usual thesis time-limits precluded complete

evaluation of the resulting design. The Turbo Pascal code

presented in the Appendix provides a basic, highly flexible

medium for exploring unsupervised training in a manner

similar to that used by comparative psychologists.

I owe thanks to many people for assistance in

completing this project. First, my daughters, Roxanne and

Tiffany, deserve appreciation for their patience with "Dad"

for all the times ha had to say, "I'm sorry, Sweetie, but

I've got to work on my thesis." My wife, Sherry, also

deserves much thanks for saying "yes" when I had to say

Itn o . "

I also need to thank my thesis committee chairman,

Dr Matthew Kabrisky. This thanks is not only for his

support and encouragement during the conduct of this

project, but also for his patience during the numerous false

starts on other topics. Thanks, also, to the other members

ot the committee, Maj Steve Rogers and Dr Frank Brown, who

offered many comments to improve the project research and

written thesis.
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Others who assisted this project are my co-workers in

the Deputy Chief of Staff for Development Planning,

Directorate of Mission Area Planning (ASD/XRS). Thanks to

Frank Erdman, Dave Webber, and Maj Fred Zietz for their

thoughtful comments and critiques. I also need to

acknowledge the patience of my boss, LtCol Dave Shoemaker,

during this period in which I know I was mole than a little

distracted from my work duties.

Finally, I thauk Julius Becsey who died suddenly and

unexpectedly during the course of this study. Julius

provided much encouragement and technical support to me

during the early stages of this project. He was an

excellent chemist, a bright mathematician, an inspired

programmer, and a good friend. I miss him every day.
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Abstract

In his treatise, Vehicles: Experiments in Synthetic

Psychology, Valentino Braitenberg used gedanken experiments

based on simple autonomous vehicle designs to illustrate the

principles behind animal nervous system organization and

operc.tion. The goal of this effort was to produce a

computer program to allow a researcher to experiment with

these concepts by analyzing tneir performance in a manner

similar to those used by experimental psychologists.

The resulting program allows the user to design

vehicles that respond to changes in their environments and

that have the ability to adapt their behavior, using a

learning algorithm developed by Teuvo Kohonen. The vehicle

designer is free to select sensor attributes, numbers of

neurons, learning periods, environments, and starting

"knowledge."

The vehicles may be analyzed by tracking their success

at locating "food" in their environment. The food is

located close to stimuli to which the vehicle sensors can

respond. Food discovery triggers the learning algorithm,

adapting behavior to improve food finding-performance.

The initial evaluations failed to provide convincing

proof that the simple vehicles tested had succeeded in

totally adapting to their environments. Suggestions for

further research are offered.

vii



A COMPUTER SIMULATION OF BRAITENBERG VEHICLES

I. Introduction

Many aspiring young scientists marvel at the varied and

complex behaviors evident among the inhabitants of a common

ant hill. Close inspection of the bustling, seemingly

chaotic, motion of the many colony members reveals

individuals responding t ) unknown instructions for the good

of the many. There are obvious specialists in a number of

occupational fields ranging from nursemaids, to foragers, to

soldiers. Even a single entity from this microdomain is

amazing to watch. It may perform a foraging task that

necessitates following an established trail over a

circuitous route to some source of food found by an earlier

explorer. Once there it will isolate a piece c- the food

small enough to carry and, retracing its steps, return to

the colony with the load to be stored ana shared with the

other inhabitants (Goetsch, 1957:109-115).

At other times this same worker may become the explorer

searching for another source of nourishment to sustain the

coloiy. The search for food and exploitation of a find

requires a number of steps that is generally performed by a

single searcher. It must perform the sub-tasks of searching

for food, identifying acceptable food, navigating back to

the colony, establishing a trail back to the source,
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communicating its find to other workers, and directing their

efforts to begin transportation cf the find back to the

coloni (Goetsch, 1957:118-122; Simon, 1981:63-65). How this

tiny forager can perform so seemingly complex a series of

tasks is truly amazing. This behavior is even more amazing

when one considers that the ant's nervous system is composed

of a few hundreds of thousands of neurons. By comparison

the humar. brain contains about 10 billion neurons. How can

such a diminutive nervous system direct such complex

behavior?

Many mature scientists have also marveled at the rich

array of behaviors exhibited by insects and higher forms of

animal life. One such researcher, Valentino Braitenberg,

has devoted much of his life to studying the nervous-system

organization of a variety of fauna. His studies of simple

animal forms revealed basic principles of neuronal

organization that tend to be retained by organisms higher on

the phylogenetic scale. He also noted that even simple

arrangements of neurons could produce complex behavior when

placed into an environment rich in appropriate stimuli.

Braitenberg's discoveries and observations prompted a

dissertation in 1984 he entitled Vehicles: Experiments in

Synthetic Psychulogy. This treatise documents a gedanken

experiment in which the author synthesizes a series of

autonomous vehicles of ever more complicated construction.

His first examples illustrate the basic principles of his

vehicles (see Figure 1). Vehicle IA has two sensors that

2



face forward from the vehicle (toward the top of the page)

and are canted outward slightly from the centerline of the

vehicle. The outputs of these sensors drive the two motors

which drive the independent rear wheels of the vehicle.

Although it is not shown explicitly in the figure, a castor

supports the front of the vehicle. Unless each motor turns

its wheel at exactly the same rate, the vehicle will tend to

-X
/I

(S~ ss) (S)

+ + I[

I M 1  M Mi 4

Vehicle IA Vehicle 2A

(After Braitenberg, 1984:8)

Figure 1
Two Basic Braitenberg Vehicles
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move in an arc determined by the speed ratio of the wheels

and their separation diztance. Note that the only

difference between Vehicle 1A and Vehicle 1B is the manner

in which the sensors connect to the drive motors. In

vehicle 1A the sensor on the right drives the right motor

and the left sensor drives the left motor. In vehicle 1B

the connections cross such that each sensor drives the wheel

on the opposite side of the car.

Assume that the sensors are photocells. It is easily

seen that the two vehicles will behave quite differently

when placed in the vicinity of a light source. Vehicle 1A

will find that a light to its front left will provide

greater illumination on its left sensor due to its proximity

to the source and the sensor's slight orientation to the

left. This will result in the left motor receiving

proportionately greater stimulation than that which the

right motor gets from the right sensor. The vehicle will,

therefore, move in an arc to the right away from the light.

As the light energy falling on each sensor diminishes, the

vehicle will slow and finally stop unless stimulated to

avoid another light source that comes into view.

Vehicle IB, however, behaves in a quite different

manner. A light source to its front left causes its right

motor and right rear wheel to turn faster than its left.

This causes it to turn toward the light until the relative

position of the light shifts to the right side. At this

point the right sensor and left motor will take control to
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steer the vehicle back toward the light. The vehicle will

accelerate faster and faster until it crashes into the light

source.

Further assume that the wiring and internal workings of

the vehicles are enclosed in a "black box." Braitenberg

notes that an observer of these vehicles might describe

their behavior in terms of certain human emotions or

qualities. Vehicle 1A is obviously afraid of the light, he

might speculate, while Vehicle 1B exhibits aggression and

must hate the light (evidenced by its violent attack).

A simple modification of these vehicles results in new

forms of behavior (see Figure 2). The change involves

driving the rear wheels at a rate inversely proportional to

the sensors' output. The stronger the stimuli, the slower

the motors drive the wheels and, conversely, the weaker the

stimuli, the faster the wheels are driven. This inhibitory

connection between sensor and drive motor (shown as a minus

sign near the drive circuitry of the vehicles in Figure 2)

causes Vehicle 2A to steer toward the light in a manner

reminiscent to that of Vehicle lB. Its behavior differs,

however, in that it slows as it approaches the stimulus,

finally stopping close to and facing the source. This

vehicle seems to love the light (Braitenberg, 1984:12).

Vehicle 2B's behavior is similar to that of iA's except

that its speed, low near the light, increases to its maximum

as the vehicle turns away and iecedes from the light source.

It will continue traveling at top speed until it reaches
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Vehicle 2A Vehicle 2B

(After Braitenberg, 1984:8)

Figure 2
Two More Basic Braitenberg Vehicles

some physical impediment or encounters another light source

that will slow and divert its path. Braitenberg describes

this as exploring behavior (Braitenberg, 1984:12). Vehicle

2B seems to like the light somewhat since it moves slowly in

proximity to it, but it soon races off in search of another

light to approach and inspect (typical, perhaps, of

adolescent romantic involvement?).
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Much of the remainder of Braitenberg's book is devoted

to discussion of increasingly more sophisticated vehicles.

He adds nonlinear control functions for motor speed,

additional sensors, computing neurodes between the sensors

and the motors, memory devices, and other refinements. As

the devices become more complex so do their repertoire of

behavioral responses. Soon the observers of these "black

box" vehicles (like the young scientists studying ants) are

completely at a loss to infer the inner workings of the

devices. The reader, however, is constantly reminded that

even the complicated vehicles are the result of the

assimilation of a number of simple components. Deducing the

cause of the behavior is difficult, while designing the

vehicles is relatively easy. Braitenberg refers to this

phenomena as "the law of uphill analysis and downhill

invention" (Braitenberg, 1984:20).

This law is eventually related by Braitenberg to the

study of insect nervous systems. In fact, many of the

principles used to describe the vehicles' neurodes and the

connections between them are based on schemata he knows to

exist in nature. It is also likely that Braitenberg has

been influenced by the developments in the field of

artificial neural networks. Although not adhering tightly

to the descriptions of established computing elements found

in the current neural network literature, Braitenberg's

designs share many common features. Of course it is also

possible that both Braitenberg and neural network
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researchers were influenced by the existence proofs offered

by biological neural networks.

It occurred to this reader of Braitenberg that

construction of these sorts of artificial life forms may be

an excellent way to investigate properties of both natural

and artificial neural networks. The "law of downhill

invention" is used in this thesis to investigate possible

principles behind the inner workings of animal nervous

systems. This investigation was conducted by constructing

and evaluating prototypes in the form of Braitenberg's

vehicles.

The novel aspect of this approach compared to

traditional neural network methods is that the success and

failure of various schemes to mimic animal neuron operation

and behavior can be evaluated in much the same manner as

those used by naturalists and experimental psychologists to

study animal behavior. Even principles of evolution such as

adaptation and survival of the fittest can be used to

evaluate the "goodness" of various network characteristics.

In addition to providing insight into the operation of

biological nervous systems, Braitenberg's vehicles can also

help us develop autonomous vehicles for a number of uses.

Even very simple vehicles could prove militarily useful in

roles such as reconnaissance and area denial. Imagine a

tactical munition dispenser filled with parachuting

mechanical "bugs" equipped with sensors and small burst-

transmission data links. After being released by a low
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level aircraft these devices would float to earth, discard

their parachutes and begin their missions.

Electrically operated and camouflaged to look like

rocks, tufts of grass and the like, the devices would move

slowly at night and rest during the day while they recharge

their batteries with solar cells. Their sensors would note

the direction of sounds and odors they had learned to detect

during their "basic training." Some would record data about

the occurrence of these stimuli for relay to SIGINT

satellites to provide intelligence about the passage of

large numbers of vehicles, gasoline vapors suggesting

refueling points or perhaps the sound of aircraft passing

overhead.

More offensive devices may be armed with explosives to

destroy passing vehicles. These mobile mines would seek to

identify the location of nearby roads from the sound of

traffic. Once located, they would crawl to the road and

wait for the next vehicle. Since the devices would arrive

at the road over a period of many days, enemy mine sweeps of

the road would have to be conducted every day. These

"cruise mines" could also be used effectively against

airfields. Some would be activated immediately while others

might "sleep" for some time before beginning their crawl

toward the enemy runways.

Of course there are many peaceful roles for such

devices too. They could be used as planetary explorers

whose low cost and weight could greatly increase the numbers

9



that could be deployed. They could also perform similar

functions on the ocean floor in quests for mineral deposits

to exploit. The ability to generate a variety of behavior

patterns selected by empirical training and employed in

numerous, low cost autonomous vehicles could lead to

serendipitous discoveries that would escape a few expensive,

preprogrammed exploratory robots.

The balance of this thesis presents four chapters that

detail the design considerations, software implementation,

and observations on the performance of the simulated

Braitenberg vehicles. The next chapter, "Animal

Psychological Phenomena," describes the physical/

psychological bases for the neuronal properties of the

vehicles to be simulated. Chapter III, "Simulation Design

Factors," discusses the manner in which the artificial world

of the vehicles is configured and how biological systems'

characteristics are emulated in the simulation. Chapter IV,

"Vehicle Evaluations," provides a review of the vehicles'

testing and observations about the methods used in the

simulation. The last chapter, "Summation," is a synopsis of

the thesis project that includes proposals for additional

follow-on work.

10



II. Animal Psychological Phenomena

The goal of this project is to develop a flexible,

programmable design for a simple autonomous vehicle that

exhibits learning and other behavior similar to animals. It

is, therefore, imperative to start with an understanding of

animal psychological phenomena. Due to the vast amount of

research conducted in the learning area in the last one

hundred years, the author has relied heavily on reviews of

the literature by D'Amato and Mazur (D'Amato, 1970; Mazur,

1986). Many references to other researchers' works are made

in these two volumes. The author has chosen to trust the

interpretations of the literature offered by these respected

reviewers without independent analysis of all the original

works. Unless directly cited, assessments of others' works

are based on these authors' analyses of the literature.

This chapter is organized into four sections. The first

deals with learning or conditioning in animals. The second

section briefly addresses aspects of memory. The following

section, Animal Psychophysics, presents an overview of the

literature relevant to the manner in which animals perceive

their environment. The chapter concludes with a brief

description of the basic units of animal nervous systems

entitled, "Micro-level Aspects of Animal Psychology." This

section deals with the basic features of neurons. Included

is discussion of their major functional components, their

internal operation, and their manner of interaction.
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Animal Learning

A key trait governed by animal brains is the ability to

learn from experience. Even very simple animals such as the

sea slug Aplysia, possessing about 18,000 neurons each, have

been shown to learn in controlled situations. For instance,

the natural reflex for Aplysia to retract its fragile gill

in turbulent waters has been shown to habituate (cease

responding) after many non-threatening stimulations. This

learned response persists for at least several hours

(Lazerson, 1988:242-243).

Researchers with animal subjects have identified two

primary mechanisms of learning. These mechanisms, classical

and operant conditioning, have been extensively studied for

the last 100 years. A wealth of information has been gained

about the macro-level function of learning. A brief review

of the literature on these forms of conditioning is

presented in the remainder of this section.

Classical or Pavlovian Conditioning.

The simplest learning paradigms are based on classical

or Pavlovian conditioning. Pavlov, a Russian physiologist,

discovered this basic learning phenomena while conducting

experiments on the digestive juices of dogs. He developed a

technique for implanting tubes in the salivary glands of

dogs to monitor their secretions while eating. Pavlov noted

that some dogs who had experience as subjects in the

experiment began to salivate before the food was presented.

He realized the dogs behavior indicated they had learned to

12



anticipate the arrival of the food based on the occurrence

of stimuli associated with the experimental procedure. In

the ensuing years, Pavlov devoted his life to studying this

phenomena.

The basic Pavlovian learning paradigm consists of four

parts. An unconditioned stimulus (US) was presented to the

subject. This US elicited a reflexive response termed the

unconditioned response (UR). In Pavlov's experiments the UR

was usually salivation to the presence of food while the

presentation of food formed the US. A conditioned stimulus

(CS), for instance the ringing of a bell, was then presented

prior to further presentations of the US. After a number of

trials the CS would begin to evoke the conditioned response

(CR), salivation to the sound of the bell, even without the

original US of food presentation. It was clear to Pavlov

that the subject had learned to associate the US with the CS

such that the CS elicited a response very similar to that of

the US (Mazur, 1986:58-59).

The phenomenon of classical conditioning appears to be

universal among animal species. In fact, researchers have

demonstrated the principles of classical conditioning at the

level of individual neurons (Kandel and Tauc, 1964:145-147;

Kandel and Tauc, 1965:1-27). Another researcher has

provided evidence that classical conditioning occurs at the

synapse level (Alkon, 1989:47). These data imply classical

conditioning is fundamental to biological learning.
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There are a number of factors concerning the

manifestation of classical conditioning that are important

to this effort. First, the common metric of CR strength is

the percentage of occurrences of the CS that successfully

elicit the CR. For a given training condition, this

performance tends to reach an asymptote below 100 percent.

No matter how many training sessions are presented,

performance does not improve beyond this level. The level

of asymptote and the speed with which it is reached

(acquisition) can, however, be influenced by the magpitude

of the US. The stronger the US the quicker asymptote is

reached and the larger its magnitude (within some limit).

The strength of the CS can also positively affect the rate

of acquisition although it seems to have no effect on the

final performance asymptote (Mazur, 1986:67-68).

An important measure of the strength of the CS-US

association is the number of presentations of the CS without

an US that still occasionally elicit a CR. Psychologists

test this linkage by conducting extinction trials in which

the CS is presented without subsequent US. The frequency of

occurrence of the CR during extinction will gradually

decrease until the CS no longer elicits the CR. The

conditioning's extinction is then said to have occurred.

This phenomenon suggests the learning process is reversible

and when the subject detects the lack of predictive value of

the CS, it forgets the relationship (Mazur, 1986:68-69).

14



Pavlov, however, discovered a curious effect related to

extinction that argues against this simple view of

"forgetting" previous conditioning. If a subject is tested

to extinction during a set of trials on one day, rested for

a day, and retested, it will often show recovery of some

portion of the conditioning. In fact, the experimenter may

see several periods of this spontaneous recovery before the

subject ceases to respond to the CS forever. Pavlov

believed that during extinction an inhibitory association is

formed between the CS and US. During the extinction trials

this association grows stronger as the previous excitatory

relationship grows weaker. Eventually the inhibitory

association overcomes the excitatory one and extinction

occurs. Over time, however, the newest association (the

inhibitory one) weakens faster. When retested, the original

association reappears since it has decayed less between the

test sessions (Mazur, 1986:69-70).

Not all researchers accept Pavlov's explanation. An

equally plausible theory relates to the subject's

recognition of successive trials being separate events each

with its own set of "rules." Thus, during the original

acquisition trials the subject sees the CS reliably predict

the US. During the extinction trials the CS never predicts

the US. During the next set of trials the subject can not

know which set of rules applies and, therefore, responds at

some intermediate level between the original asymptotic rate

and no responding at all (Mazur, 1986:70). Although the
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mechanisms behind spontaneous recovery are unclear, it is a

phenomennon that high fidelity simulations oi animal

learning should have the capability to mimic.

Yet another aspect of classical conditioning is

important to this effort. Often a novel 3timuli can replace

the CS and evoke the US. A subject, fcr instance,

conditioned with a 1200 Hz tone may also respono to a 1000

Hz tone. This phenomena is known as generalization. As

might be expected, the degree to which the novel stimuli

elicits the CR is positively correlated with its similarity

to the CS (Mazur, 1986:72-73).

The final features of classical conditioning which seem

relevant for this thesis deal with the temporal

relationships between the CS and the UF. Four temporal-

based paradigms for classical conditioning are noted in the

literature: simultaneous, delay, trace, and backward. In

simultaneous conditioning the CS and US begin at the same

time. Extinction studies indicate such conditioning is much

weaker than other forms in which there is some delay between

the CS and US. It is as if the strength of the link between

the CS and US depends on the reliability of the CS to

predict the US. If the CS and US appear at the same time,

the CS is of nn value as a predictor and, therefore, the

association is weak (Mazi1r, 1986:74-75).

In delay conditioning the CS begins before the US and

continues during its presentation. When the onset of the US

occurs slightly after the CS (short delay conditioning), the
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strongest and fastest conditioning occurs. As the deiay

between onset of the CS and onset of the US increases, the

strength of the resulting conditioning decreases (Mazur,

1986:75).

An interesting effect is seen when the time between CS

onset and US onset is extended. At first the subject will

begin to respond when the CS starts. After a few trials,

however, the response is delayed longer and longer until it

begins slightly before the US begins (Mazur, 1986:75).

Obviously the subject has some capacity to estimate the

passage of time and include this information in his

conditioning process.

The third temporal paradigm in classical conditioning,

trace conditioning, is defined by the onset and termination

of the CS before the onset of the US. The subject's

association is therefore mediated by the memory "trace."

Here again there is an inverse relationship between the

interstimulus interval and the strength of the conditioning.

As one would expect, the negative effect of the time delay

on trace conditioning is greater than that seen in delay

conditioning (Mazur, 1986:75). There is also evidence to

suggest the effect of time is highly dependent on the

particular stimulus-response modalities.

An excellent example of this modality-specific temporal

factor occurs in a paradigm known as taste aversion

conditioning. In these experiments the CS is a novel

tasting food. Following ingestion of the food the subject
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is injected with a solution which makes it ill. After

recovering, the subject is again presented with the CS. The

usual response is little or no ingestion of the food. The

aspect of interest is the relatively long delay between the

CS (novel food) and the US (illness) which may be hours or

even as much as a day (Mazur, 1986:62). The length of this

delay is in sharp contrast to the findings Mazur attributes

to Schneiderman (1966). Mazur notes that Schneiderman's

study of the response of the rabbit's nictating membrane (a

translucent, protective "eyelid" found under the actual

eyelid) to puffs of air shows no conditioning if the

interstimulus interval exceeds a few seconds (Mazur,

1986:75). Intuitively, we should not be surprised by these

findings. The benefit to the organism of associating the

delayed adverse effects of a toxin to its likely source is

great. Conversely, the necessity to predict an irritant

entering the eye is limited to a brief period before it

arrives (just enough time to blink). We might well expect

species to develop specialized association centers with

optimized memory duration due to the natural selection

advantages these centers would offer.

The final form of conditioning, backward conditioning,

presents the CS after the US. As might be expected, this

form leads to little, if any, conditioning (Mazur, 1986:75-

76). This result is consistent with the principle of

conditioning strength being related to the efficacy of the
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CS as a predictor of the US. Since the CS is not a

predictor, no conditioning strength is formed.

Although classical conditioning may be the fundamental

mechanism of learning in animals, few researchers now

believe it is the most important. Classical conditioning

has given way to operant conditioning as the accepted

universal learning mechanism. The next section presents a

brief summary of the important features of this companion

mechanism of animal learning.

Onerant ConditioninQ. The typical operant conditioning

learning paradigm consists of an experimental environment in

which the subject is provided some means to perform a task

(with rat subjects the usual task is to press a bar while

pigeon subjects are generally required to peck a disk). The

task corresponds to the conditioned response of the

classical conditioning paradigm. As some criteria of task

performance is surpassed, the subject is reinforced or

punished with some action that affects its level of

satisfaction or level of some internal "drive."

Reinforcement actions may either provide something favorable

to the subject, positive reinforcement, or withhold

something unfavorable, negative reinforcement. Positive

punishing actions apply an unpleasant stimulus to the

subject while negative punishment removes a favorable

stimuli.

Generally, the application of reinforcement, positive

or negative, tends to perpetuate the behavior with which it
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is associated. Either form of punishment tends to inhibit

the occurrence of the behavior (Mazur, 1986:161-162). The

dependent variables of interest to the experimenter are

generally the number or strength of responses the subject

will make between reinforcements or the number of responses

it will make before it quits responding (reaches

extinction).

Operant conditioning difters from classical

conditioning in sevrral important respects. First,

classical conditioning pairs an unconditioned stimulus with

a conditioned stimulus to study the effect it has on a

naturdl, reflexive response (the unconditioned/conditioned

response). The experimenter merely has to present the US to

reliably evoke the UR (D'Amato, 1970:263). Operant

conditioning, however, examines the principles behind the

development of "voluntary" behavior patterns (Mazur,

1986:117). That is, those which require the subject to

perform some overt action.

Another difference in the two types of conditioning is

the basis on which the US is presented to the subject. With

classical conditioning the US presentation is independent of

the behavior of the subject. But, in the operant

conditioning case the subject's behavior ultimately controls

the presentation of the US reinforcer. That is, in the

operant conditioning case the US (reinforcement/punishment)

is response contingent (D'Amato, 1970:263).
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Early experimenters in the investigation of the

influence of experience on voluntary behavior used a device

termed a puzzle box. The experimenter using a puzzle box

parAdi'-. ccinfinezd a -ubject aninal in a cage until it

discovered the correct behavioral response to open the door.

The response required to release the door could be one or

more specific actions like pulling a string and/or pressing

a lever. One experimenter, E.L. Thorndike, proposed a

theory of learning he called the Law of Effect. This law

noted that if a number of responses are made to a given

situation those...

"...which are accompanied or closely followed by
satisfaction to the animal will, other things being
equal, be more firmly connected to the situation, so
that when it recurs they will be more likely to recur;
those which are accompanied by or closely followed by
discomfort to the animal will, other things being
equal, have their connections with that situation
weakened, so that, when it recurs, they will be less
likely to occur. The greater the satisfaction or
discomfort, the greater the strengthening or weakening
of the bond (Mazur, 1986:118-119)."

Thorndike defined satisfaction as the state which an

animal does not seek to avoid and often acts to achieve. He

defined discomfort as a state the animal actively seeks to

avoid (Mazur, 1986:119). In terms of the earlier

definitions, satisfaction is reinforcement while discomfort

is punishment.

An interesting finding by other puzzle box

experimenters, E. R. Guthrie and G. P. Horton, demonstrateQ

the association of an animal subject's precise behavioral

actions with reinforcement. Their studies involved cats in
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a simple puzzle box where any movement of a vertical pole in

the box released the door. By connecting a camera to the

release mechanism of the door they were able to record the

position of the subject when the release response was made.

Although the behavior which resulted in release varied

considerably during early trials, the later efforts

indicated each subject developed particular behavioral

responses to achieve release. These responses included

pushing the pole with the left paw, rubbing the pole with

the nose, lying down and rolling into the pole, biting the

pole while standing in a certain position, and rubbing the

pole with the body (Mazur, 1986:120,122).

It is obvious the subjects did not "understand" even

the simple concept, "door opens when pole is moved."

Rather, the animals recreated the movements which they had

made just prior to release from the box 'reinforcement).

Mazur speculates that the animal eventually settles on a

particular response due to the formation of secondary

reinforcers related to recall of precise body movements,

muscle contractions, and limb positions that preceded

previous reinforcement. The feedback of these secondary

reinforcers lead to the more probable selection of related

behaviors until they dominate the learning process (Mazur,

1986:120-122).

Although many variables have been shown to affect

operant conditioning, four are particularly relevant to this

effort: magnitude of reinforcer, drive level of the subject
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relative to the reinforcer, time delay between response and

reinforcer, and schedule of reinforcement (D'Amato,

1970:274).

The magnitude of the reinforcer has a positive effect

on the performance asymptote. That is, other factors being

equal a larger reinforcement will result in stronger

response (D'Amato, 1970:275,276). The relationship,

however, is not a simple one. Studies in which the

reinforcement level has been varied indicate the subjects'

response strength quickly adapt to the change. Changes from

a large to small reinforcer will see a rapid decrease in

response strength that eventually coincides with the normal

strength for that reinforcement level. Likewise, changes

from small to large reinforcements see rapid increases in

the response strength (D'Amato, 1970:277). Due to the

rapid adjustment of response strength to reinforcement

levei, many researchers, according to D'Amato, believe,

"...amount of reward affects performance rather than

learning." If learning were truly affected, there would be

a longer lasting influence of reinforcement magnitude

evident (D'Amato, 1970:281).

The effect reinforcement magnitude has on extinction is

unclear. D'Amato cites references that indicate both

positive and negative relationships. He proposes a theory

of a nonmonotonic interaction effect between amount of

training and size of reward (D'Amato, 1970:290-291). Due to

the lack of subsequent experimental support for this theory

23



the author has chosen not to consider it as a factor in the

vehicle component designs.

The drive level of the subject is an important factor

in operant conditioning. Although drive is difficult to

define, we can list a number of factors which most people

will agree are bases for biological motivation. These

include hunger, thirst, sex, and social contact. It is

somewhat intuitive that if one is using food as a reinforcer

the subject will make more effort to learn if it is hungry

than if it has just eaten. In general, the effect of drive

level is similar to that of reinforcement magnitude. The

higher the drive level, the higher the response asymptote

(D'Amato, 1970:282). This fact may also seem intuitive. If

reinforcement is sought in order to decrease drive, then

larger reinforcements and lower drive should have similar

results in that they both reduce the difference between the

current and goal states.

Drive level is also believed to have little effect on

the rate of eventual extinction of a conditioned response

(D'Amato, 1970:289). This finding is consistent with the

rapid adaptation of response intensity to reward magnitude.

After all, during extinction reinforcement is reduced to

zero by definition.

As is the case with classical conditioning, there are

important temporal factors evident in operant conditioning.

These factors are witnessed by the effect of delay between
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the response and reinforcement and by certain phenomena

associated with the schedule by which reinforcement is made.

The time delay between the conditioned response and the

reinforcement is inversely related to the strength of the

association. This relationship is demonstrated both in the

asymptote and rate of learning. Delay of reinforcement also

affects the subject's resistance to extinction in a positive

manner (D'Amato, 1970:283-285, 293-294). Experiments which

have investigated the role that delaying reinforcement has

on eventual extinction have sometimes been confounded by the

timing issue. If a subject is accustomed to receiving a

reinforcer some time period following a response, when does

the extinction period actually begin? By definition,

extinction begins with the last reinforcement. If, however,

the subject does noc expect the reinforcement for some time

interval, then extinction should not commence until

expiration of the expected delay. This sort of problem also

confounds the study of extinction of behaviors under various

temporal schemes for delivery of reinforcement.

The criterion by which reinforcement is administered is

an important factor in the overall operant conditioning

process. B. F. Skinner pioneered investigations on the

effect of differing reinforcement schedules on conditioning.

He identified four major classes of these schedules, fixed

ratio (FR); fixed interval (FI); variable ratio (VR); and

variable interval (VI). The schedules involving a ratio, FR

and VR, provide reinforcement after a fixed or variable
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number of responses by the subject. The interval schedules,

FI and VI, provide reinforcement immediately after the first

response following expiration of a fixed or variable time

interval (Mazur, 1986:139-144; D'Amato, 1970:389).

Animals trained to respond for some form of

reinforcement develop characteristic behavior patterns

depending on the type of reinforcement schedule used.

Generally these behavior patterns are studied by recording

the subjects' cumulative responses over time and the number

of responses made before extinction of the conditioning.

The shapes of the cumulative response curves provide clues

relevant to the associative mechanisms within the animal.

The variable ratio (VR) and interval (VI) schedules

both produce generally linear cumulative response records.

The subjects respond as if they are aware that there is no

discernable pattern to the schedule. The VR response curve

usually indicates a steeper slope since the ability to

generate more responses will result in more rewards per unit

time. This isn't the case with the VI schedule.

Reinforcement only occurs after the next response following

the expiration of the time interval (which the subject can

not predict). Lower level response rates will provide

nearly the same amount of reinforcement as faster rates

(D'Amato, 1970:392; Mazur, 1986:140-14,143-144).

The fixed ratio (FR) and fixed interval (FI) schedules

are another matter. Larger FR schedules (those requiring

many response between reinforcements) have a characteristic
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response pause after each reinforcement followed by a rapid

period of response until the next reward. This gives the

cumulative response record a sort of skewed, stair-step

appearance. As the ratio of responses to reinforcement

decreases so does the post-reinforcement pause (Mazur,

1986:139-140).

FI schedules have a scalloped appearance resulting from

a post-reinforcement response pause and an accelerating

response rate until the next reinforcement. The subject

reacts as if it recognizes that a given amount of time must

pass before the next reward is possible (Mazur, 1986:142,

D'Amato, 1970:392). This evidence suggests, once again, the

existence of some internal time sense within the animal

subjects. Also implied is the notion that this time sense

can be remembered in relation to events which affect the

well being of the animal.

Both classical and operant conditioning have been

studied with countless experimental designs and subject

species from planaria to human beings. The wealth of data

is overwhelming to even the casilal observer. Presumably,

the preceding section has imparted the reader with a feel

for the important features of behavioral adaptation in

animals. Assuming that evolution has over the last hundreds

of millions of years settled on a near optimal system for

controlling its more complex products, the behavior of

biological nervous systems provides an excellent model for

developing artificial control systems. The features of
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operant and classical conditioning form the framework for

the performance objectives in this project.

Implied in the concept of learning is the retention of

the learned behavior over time. This retention is

attributed to a memory trace somehow recorded in the

animals' nervous systems. Memory in animals is much harder

to study that it is in man. The range of responses for

human subjects provides improved opportunities for

exploration. The next section provides a very brief

assessment of the most relevant memory issues for this

project.

Memory

The literature concerning this subject generally

identifies two operationally defined types of memory: short

term memory (STM) and long term memory (LTM). Short term

memory is often viewed as a limited, temporary storage

location for sensory inputs or strings of recalled items.

Long term memory is much more permanent and has a much

larger capacity. In computer terms short term memory might

be thought of as a buffer where data is kept between

operations. Long term memory in this analogy would be the

magnetic disk that permanently stores information.

Short term memory has been shown to decay rapidly when

efforts are made to inhibit the rehearsal of the memory

items. In fact, an experiment by S. Hellyer indicated that

nonsense syllables committed to memory with a single

repetition were recalled correctly only 40% of the time
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after only 9 s&%conds (D'amato, 1970:616-617). Increasing

the number of repetitions to 8 brought correct retention to

the 90% mark, but even then performance dropped to 70% after

less than 30 seconds. This rapid fading of the memory trace

in STM reinforces the notion that its primary use is as a

scratch-pad for various mental functions.

Although there have been a number of researchers who

have sought to reject the idea that STM and LTM are two

distinct memory processes (b'Amato, 1970:614-615), the

question is immaterial for this project. The important

aspect of this dual representation is the functional

differences between STM and LTM and hheir roles in learning.

In one sense, short term memory could be thought of as

a filter in which incoming sensory information spends a

short time while subsequent events determine whether it is

important enough to commit to permanent storage. In fact,

STM may be the portal through which all memories pass

provided they have sufficient reason for so doing. Many

researchers believe the human brain's memory capacity is

effectively incapable of being overloaded in a normal human

life time. In such a model, records of all sensations and

everyday events are locked away in our minds. The problem

is accessing the memories that are there. This may be true

for the relatively enormous brains which differentiate

humans from most other species, but those less "blessed"

with cerebral cortex may require judicious use of storage

capacity.
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For this effort it is sufficient to recognize that both

STM and LTM have roles in adaptive organisms. Short term

memory c-n serve as a memory store to improve the

a-s;ciation between tine displaced events. Since most

events which are recorded in the STM store will be

irrelevant, it must purge itself quickly to make room for

p-ssibly more critical infoiimation. Once the important data

have been recognized, LTf" provides the means to store them

reliably for extended periods. Such memoried behavior

patterns tri gered by sensory events are the essence of the

basic conditioning mechanisms discussed in the preceeding

section of this chapter.

Although the sensors on the Braitenberg vehicles that

were discussed in the introduction of this thesis are very

simple, there are still important links to be made to the

concepts that govern biological sensors. The next section

deals with the features of perception that are relevant to

the simulated, simple, adaptable organisms that are

described in Chapter II.

Animal Psychophysics

Psychophysics deal- with the relationships between the

physical stimuli that impinge upon an organism and its

resulting psychological experience. Physical energy (light,

sound pressure, heat, etc.) first must strike a sensory

organ in order to he dete(ted by the organism. Within this

sense organ some change takes place which ultimately affects

the firing rate of one or more neurons. These neurons carry
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information about the physical energy (its intensity, rate

of change, spatio-temporal organization, etc.) to other

neurons which may stimulate behavior changes (Forgus and

Melamed, 1966:7-8).

For the design of the vehicles, the important variables

are the dynamic range of the various sensor types, their

neural response in relation to their energy intake and their

directional sensitivity. The goal of this effort is not to

model an existing organism, but to model basic animal

characteristics. For this reason discussion is limited to

general psychophysical phenomena.

Dynamic range is an index of the useful range of

stimulus energy levels over which a sensor can work

(Geldard, 1972:8). Biological sensors often exhibit dynamic

ranges which are impossible to duplicate with current

technology. The human eye, for instance, has an operating

range of about 1 billion units. That is, the ratio between

the minimum light detectable and the intensity at which

vision fails is 1 billion to one.

While dynamic range deals with the physical limits of

sensors inputs, another important stimulus scaling parameter

deals with the sensors' output. Investigations of the

relationship between physical stimulus intensity and the

resultant sensation level (the perceived stimulus intensity)

date to the 1800s. During the 1830s E. H. Weber studied

what he termed "just noticeable differences" (JNDs) of

weights held in the hand. Weber noted that regardless of

31



the original amount of weight used the additional weight

needed for a human subject to detect a difference was a

constant ratio of the beginning weight. This relationship

is generally written as

D/I =K ()

where

D = Just noticeable stimulus difference

I = Physical intensity of the stimulus

K = Constant ratio for the sensory modality

(Forgus and Melamed, 1976:46; D'Amato, 1970:154)

A student of Weber's, G. T. Fechner, developed this

"law" further by assuming that JNDs represent equal

increments on the sensation scale. Given this assumption

the intensity of any sensation can be expressed as

S = k log E / T (2)

where

S = sensation level

k = the ratio constant

E = the physical stimulus intensity

T = the stimulus threshold or minimum

(Forgus and Melamed, 1976:46-47; D'Amato, 1970:157)

Due to the wide range of intensities of physical

stimuli in nature, most biological sensors have a wide

dynamic range. The logarithmic relationship in Equation 2

is a mechanism to provide this dynamic range in neural
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systems which use firing rate to code strengths of signals.

There is much experimental evidence to suggest the law does

noL peluifm well at the extremes of the sensory response

scale. This relationship will, however, suffice to describe

the transfer function for stimulus intensity to sensation

level for the vehicles to be modeled.

So far, the discussion has covered animal psychological

phenomena by describing system-level responses to various

inputs. One final area of discussion for this chapter that

needs to be addressed is that of the elemental components of

the animal nervous system, the individual neurons.

Micro-level Aspects of Animal PsycholoqV

Neurons are highly specialized zells adapted for the

transmission and simple processing of the data and

instructions that are required for the operation of an

organism. Neurons within an organism are also highly

specialized. Some serve as monitors of external and

internal conditions (sensors), some process information

received from other neurons, while others are adapted to

serve as transmission links to various parts of the

organism's body. Although the cells that function as

sensors differ greatly from those that serve as transmission

lines, most neurons are composed of three main, identifiable

components: the soma, the dendrites, and the axon.

The soma, or body, of the neuron integrates the input

signals it receives from other cells and, if stimulated

sufficiently, initiates signals to pass to still other
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cells. The soma receives its inputs via appendages called

dendrites.

The dendrites receive stimulation from the axons of

other neurons. The stimulation is received at specialized

areas of the dendrites and soma called receptor sites. The

stimulation is propagated across small gaps, termed

:ynapses, between the transmitting neuron and one of the

receptor sites on the receiving neuron's dendrites.

Neurons transmit their own signals via another,

generally much longer appendage, the axon. Like the rest of

the neuron, the axon is electrically active. It maintains

an electrical potential through the membrane which forms the

cell wall. This resting potential, which is about -70

millivolts from the interior to the exterior of the cell, is

maintained by the active transport of potassium, sodium, and

chloride ions through the membrane (Cruz, 1988:4).

When the soma receives enough net stimulation to fire,

a localized area of the cell wall passes a current that

causes a rapid change in the resting potential. The voltage

change causes adjacent areas to also begin a current flow

resulting in formation of a moving voltage spike along the

neuron's soma and down the length of the axon. The

propagation of the signals across the synaptic junction

between the axon of one neuron and the dendrite of another

is accomplished chemically by neurotransmitters. These

chaemical compounds are released by vesicles at the end of

the axon. They diffuse quickly across the narrow synaptic
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gap, are absorbed by the receptor site, and induce changes

in the dendrite of the receiving neuron. These changes

ultimately affect the probability that the neuron will fire.

Neurotransmitters can either increase the probability that

the receiving cell will fire (excite the neuron) or decrease

its probability of firing (inhibit the neuron) depending on

their type (Wasserman, 1989:194-198).

Since the resting potential of the neuron requires a

small amount of time to recover between discharges, each

cell has an upper bound on its firing rate. Its lower bound

is zero since a negative firing rate has no physical

meaning. In some cases, however, a neuron may have a normal

firing rate baseline that can be driven higher or lower by

excitatory or inhibitory stimulation. In this case one

could view inhibitory inputs as causing a negative firing

rate (in relation to the baseline).

The degree to which the neurotransmitters affect the

receiving neuron's firing rate appears, at least in some

neurons, to be modified by experience. In fact, a number of

researchers have reported neuronal changes as a result of

classical conditioning. One change noted involves a protein

induced decrease in potassium ion flow through the neuron's

cell wall. This change in ionic activity results in

hyperpolarization of the cell with correspondingly greater

sensitivity to excitatory inputs. As viewed by the neuron's

soma, the inputs that occur along the sensitized pai I.ays

have a greater importance or "weight" than those on less
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sensitive routes. Interestingly, the changes noted last for

at least a matter of days (Alkon, 1989:44). This phenomena

may well represent a fundamental adaptive mechanism in

animals.

The firing rate of a neuron is also influenced by the

pattern of inputs it receives. The stimulation from one

neuron to another is often based on the firing rate of the

transmitting neuron (temporal summation). If enough input

pulses are received in a given period of time (perhaps the

time required for the resting potential to recover following

the last firing), the firing threshold of the receiving

neuron can be exceeded and a discharge impulse generated

(Cruz, 1988:4).

Another encoding scheme seen in neural connections is

based on the time phasing of arriving pulses. Since not all

connections between neurons are strong enough to fire the

receiving neuron alone, it is sometimes necessary for pulses

to converge at the same time from several transmitters in

order to fire the receiver. This spatial summation mode

provides a means of efrecting a wider range of logic gate-

like units within the neural system (Cruz, 1988:5).

While the basic neural unit is relatively simple, their

organization within an organism becomes increasingly complex

as one moves up the phylo-genetic scale. In mammals, for

instance, some neurons may receive inputs from hundreds of

thousands of other neurons (Alkon, 1989:42). This high

degree of connectivity has led some students of neurology to
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observe that every neuron is affected, directly or

indirectly, by every other neuron. It is this organization

of billions of basic units in the central nervous systems of

larger animals that provides the robustness we see exhibited

in their behavior and survival. The inherent flexibility

and fault tolerance exhibited by such a massively redundant

and parallel system has led to its evolutionary development

in higher life forms from the simple neural building blocks

found in lower animals.
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III. Simulation Design Factors

Simulation involves the creation of a false "world" in

which events occur that are analogous, in their most

important respects, to events in the "real" world. The

degree with which the laws that govern the simulation events

mimic the laws that govern physical events determines the

overall fidelity of the simulation. This chapter describes

the essence of the simulation world created for this thesis

and the elements of the natural world which establish the

analog relationships between the two. The first section

deals with the environment in which the primary objects of

simulation, the vehicles, exist. The second section

describes the major components and operating features of the

vehicles. The final section traces the operation of the

vehicle through a complete cycle of its internal workings.

The Environment

For this thesis project the index of success is the

demonstration of the ability of the simulated vehicles to

learn. The simulated Braitenberg vehicles must be capable

of adapting their behavior to their environment in order to

achieve or maintain some desirable state. In the parlance

of neural network research, this trait is termed

unsupervised training. That is, the network which guides

the vehicle must learn without being provided feedback by a

human observer. To do so the vehicles must have indices of
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their success or current "wellness." It is these indices

that the vehicles' control systems will try to maximize.

In order to maintain the analogy between the simulated

vehicle and biological systems, the wellness index is

modeled as the vehicles' energy states. Movement depletes

the vehicles' energy, while discovery of food (and its

implicit consumption) increases their energy. The food has

no stimulatory signature itself, but it occurs in close

proximity to certain environmental features that serve as

stimuli. The food location and its relationship to

stimulatory features form the key attributes of the

environment.

Since there needs to be a large number of encounters

with food to provide sufficient adaption opportunities for

the vehicles, it is unwieldy to model each item of food

explicitly. Instead a probabilistic relationship between

the food items and designated stimuli in the environment has

been defined. This allowed a great reduction in the number

of individual items tracked within the code of the

simulation.

A good analogy for the food-stimulus relationship used

is mushrooms growing under a street light. The light can be

detected by certain electro-magnetically sensitive devices

(such as photocells) that are unable to detect mushrooms

directly. If the mushrooms require the radiated energy of
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the street light for sustenance, then the presence of

mushrooms can be indirectly detected by the light sensor.

The mushrooms are distributed about the point directly

beneath the light. Their density per unit area is a

function of the radiation intensity striking the ground.

Therefore, the probability of a mushroom being in a given

unit area decreases as a function of the inverse square of

the lateral distance from the point directly under the

light.

The lights can be any of three types: red, green, and

blue. Their intensities fall into the range from 0 to over

2 million units. Not all of the lights can nurture the

"mushrooms." Even lights of the same type may not a±J. have

food associated with them.

There is another type of stimulus found in the

environment in addition to the lights. These are analogous

to souna sources like babbling brooks, or rushing water.

These features may also be associated with food sources

(perhaps cat tails, or lily pads?). Their intensities are

selectable through the same range as are the lights. The

characteristics in effect for any particular environment can

be selected by the environment designer (e.g., number of

stimuli, their types, which support food in their vicinity,

their intensities, etc.).

The terrain in which the light and sound source

features are found is both closed and infinite. That is,
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the vehicle can neither exit the world nor encounter its

boundary. It is as if the world were laid out on an

infinite checkerboard with each square arranged exactly like

its neighbors. All the light and sound features are

arranged in exactly the same manner in each square. A

traveler in the world can move from one square to another by

slipping under the black, sound-proof curtain that surrounds

each square. Once under, he can then view or hear the

stimuli in that square, but no stimuli can penetrate from

other squares. The observer monitoring the traveler via the

computer screen sees him exit one side of the screen and

immediately reappear at the opposite side. The terrain

itself is flat and smooth with no obstacles and no

additional features.

The software limits the world to no more than eight

stimuli. Experience has shown, however, that the screen

becomes crowded if there are more than three stimuli

present. The number of stimuli can also adversely affect

run-speed since the distances from the vehicle to each

stimulus must be found during each move cycle. Likewise,

the probabilities of foods being found are functions of the

distances to each stimulus. These probabilities must also

be calculated during each time period. These calculations

can noticeably lengthen run-time as the number of stimuli

increase. For these reasons, the number of stimuli has

generally been limited to three or less.
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The Vehicles

The vehicles retain the essential elements of

Braitenberg's concepts as presented in Chapter One, Figures

1 and 2. The basic architecture of the thesis vehicle is

presented in Figure 3. Several differences are immediately

apparent. First, the vehicles contain up to four sensors

(labeled S1-S4 in the figure). Second, each sensor has an

associated "delta" sensor designated as SAl-SA 4 . The delta

sensors indicate the change in the corresponding sensor's

output from the last time period. Another difference is the
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Figure 3
The Complete Simulation Vehicle
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three neurons (D1-D3) that drive the motors (Ml and M2).

These neurons enable the vehicle to make three distinct

movements. Dl and D3 control left and right turns

respectively, while D2 allows the vehicle to go straight.

The arcing connections among the "D" neurons are mutual

inhibition links that result in the neuron with the highest

output gaining control of the motors.

The f nal difference between the thesis vehicle and the

earlier Braitenberg concepts lies between the sensor and

motor stages. Up to 20 simple processing elements or

neurons lie between the sensors and the motor drive units

represented in the figure as the column of cir'les labeled

Hi through H20. This "hidden layer" provides additional

processing capability for associating sensory inputs with

appropriate motor responses. It also provides an

architecture more closely aligned with those studied in the

branch of artificial intelligence known as artificial neural

networks. Since neural network writings have greatly

influenced this project (and probably Valentino Braitenberg

a3 well) it is appropriate to digress here to provide the

reader with a short history and tutorial on neural networks

as they pertain to this thesis. Following this background

section, the balance of Chapter III addresses the design,

implementation and features of the sensors, hidden n'2uron

layer, and drive neuron stages. The chapter concludes by
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tracing the operation of the vehicles' internal workings

through a complete cycle.

Artificial Neural Networks. The underlying goal of

artificial intelligence (AI) is the development of

algorithms and machines that "...exhibit the characteristics

we associate with intelligence in human behavior..." (Barr,

1981:3). Much early work in AI was concerned with

intelligence at the macro level: symbolic processing, speech

understanding, expert systems, etc. A few researchers

attacked the problem at the micro level with studies of

artificial neurons. These aa-cificial neurons were viewed as

the basic building blocks of large, massively parallel

computers that would prgcess data in a manner similar to

that used by biological nervous systems. After a period of

rapid expansion, this research was interrupted when one of

its pioneers proved that certain popular architectures were

not as robust as first believed. In 1969 Marvin Minsky

published his now famous (infamous?) proof of the inability

of single layer networks to solve many simple problems such

as that of the exclusive-or gate (Minsky and Papert, 1969).

Many researchers gave up work in the artificial neuron field

based on the impact of the arguments of the highly respected

Minsky. The resulting hiatus in neural network developments

coincided with continued acceleration in the progress of

sequential computers that improved the ability of
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researchers to simulate large neuronal nets (Wasserman,

1989:5; Rogers, et al., 1990:13-14).

A small group of researchers continued their efforts at

developing neuronal computing elements and architectures.

This group, including people like Teuvo Kohonen, Stephen

Grossberg, and James Anderson continued their research and

eventually developed a theoretical basis for neural networks

that rebuked Minsky's assessment as being overly general and

based on a narrow set of single-layer architectures

(Wasserman, 1989:6).

The period from the late 1970's to the present has

witnessed another explosion of research in artificial neural

networks. A number of different E :chitectures using

multiple layers, various computing elements and a host of

learning schemes have been devised. Some have been

optimized for pattern recognition, some for resource

constraint problems, some for optimized control, and some

for their ability to mimic the mental activity of the animal

nervous systems at various levels of operation. This

project is concerned with this latter area of neural network

research.

In general, neural networks consist of multiple layers

of individual computing elements. These elements, or

artificial neurons, approximate the operation of certain

biological neurons. They generally have a number of input

ports linked to either the outside world or other neurons.
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These ports have varying multiplication factors or "weights"

that are applied to the input values. The input ports are

analogous to the dendrites of biological neurons. Also like

the biological neurons, the input lines may either excite or

inhibit the activity of the parent neuron (determined by the

sign of their weights).

The body of the artificial neuron, which corresponds to

the biological soma, combines all the inputs, excitatory and

inhibitory, and passes the resulting sum through a transfer

function. The transformed signal is the output of the

neuron.

In order to capture the power of additional neuronal

layers, the neurons' transfer functions must be non-linear.

The reason, alluded to previously, is as follows. It can be

shown that any multi-layer network based on linear elements

can be represented by an equivalent single layer net

(Wasserman, 1989:19). This is not, however, true for

networks with non-linear elements. Recall that it was

single layer networks that Minsky and Papert demonstrated

could not perform some simple functions (like that of the

"exclusive or" logic gate). Therefore, the use of non-

linear transfer functions results in more powerful networks

by avoiding the limitations of the linear activation

functions.

An example of a non-linear function is that of a simple

step response. Many neural networks rely on this type of
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function. The neurons in these architectures are termed

threshold devices. In threshold devices the output is zero

until the sum of its inputs exceeds its threshold. At that

time, its output "steps" o some predetermined value,

usually one.

The output of an artificial neuron may connect to the

inputs of one or more other neurons. This is analogous to

the axon of a biological neuron forming synapses with

numerous dendrites of other neurons. As in the biological

model, artificial neurons usually transmit the same signal

to all connecting neurons. The received signal, however, is

modified by the connection weighting values (and their

signs) of the receiving neurons.

The critical function of the artificial neural network

is its ability to modify the connecting weights between

nodes. In fact, unlike a von Neuman-based computer with its

centralized memory storage area, neural network data is

distributed throughout the network encoded in the pattern of

connection weights between the nodes. The node connection

weights are analogous to long term memory in biological

nervous systems.

The distribution of data throughout a system network of

simple, parallel computing elements provides attractive

features for both artificial and biological data processors.

One feature is speed due to the potentially massive

parallelism of the architecture. With many elements working

47



small parts of the problem at the same time, even large

problems of the NP-complete variety can sometimes be solved

in less than geological time units (Rogers, et al., 1990:2).

Another important feature of distributed processing/

distributed data storage is graceful degradation. Since

individual elements do only small parts of the total job and

since there are many paths through the network, loss of a

few links or nodes will not result in total incapacitation

of the system. Speed and graceful degradation are equally

important for the control systems of both organisms governed

by the Law of the Jungle and machines governed by the Law of

Murphy.

If the utility of neural networks as computational

devices is not yet clear I will offer one more analogy to

illustrate their functional operation. The usual model used

to illustrate the underlying principles behind neural

networks is the mapping of activity in a higher dimensional

space to that of a lower dimensional one.

To illustrate the concept of mapping, consider a

typical three layer neural network consisting of eight input

nodes, twenty hidden nodes in the second layer, and a third

layer of three nodes. Assume that the input nodes are

connected to the environment via sensors. The eight input

values can be viewed as an eight dimensional vector. The

propagation of the input signals through the second layer

results in another vector of twenty dimensions (i.e., the
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output of the second layer). At this point the original

inputs have been mapped from an eight dimensional space to a

twenty dimensional space.

Likewise, after the signals from the second layer

propagate through the final layer, the result is a three

dimensional mapping of the original eight dimensional input.

This reduction of feature space dimensions represents the

assimilation and classification/simplification of data. If

the nodes used in the network were simple threshold devices

with two states ("on" and "off"), the mapping would reduce

the number of potential inputs from 256 (two to the eighth

power) to 8 (two to the third power). If the mapping is

performed with appropriate rules, the reduction of

possibilities can make the data much more useful for control

and decision support.

Presumably, this brief discussion of artificial neural

networks will assist the reader in understanding the design

and operation of the basic vehicle developed in this thesis

effort. The balance of this chapter deals with these issues

beginning with the vehicle sensors.

The Sensor Stage. The sensors provide the interface

between the vehicle and its environment. There are three

main types of sensors used in the vehicle. Two of these

types are exterioceptors (i.e., sensors that monitor

external events) that correspond to the two classes of

stimuli found in the environment: light and sound. The

49



remaining type is an interoceptor (i.e., an interior state

sensor) that signals changes in the energy state of the

vehicle.

The Exterioceptors. The light and sound sensors

are treated in identical fashion. Each sensor output is a

function of four variables: intensity of the stimulus at

the sensor, frequency response (the frequency of the

stimulation relative to the response of the sensor to that

stimuli), gain of the sensor "antenna", and the sensor

transfer function.

The stimulus intensity arriving at the sensor is given

by the inverse square law

E = I / D2  (3)

where

E = the stimulus intensity at the sensor

I = the stimulus intensity one unit distance away

D = the distance of the sensor from the stimulus

The second variable affecting sensor output is the

frequency response of the sensor to the stimulus. The

frequency response of each stimulus to each sensor type is

represented in Table 1 below.

For a particular sensor type, the data in Table 1

indicate the proportion of energy from a particular stimulus

type that affects the sensor. The notations 1000, 2000, and

3000 refer to the center frequencies of the sound sensors.
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The intersection of the stimulus type row and the sensor

type column locates the proportion of the stimulus that

affects the selected sensor. Thus, only 30% of the energy

from a blue stimulus is effectively used by a green sensor.

Note that there is no cross sensitiviLy of light sensors to

sound stimuli or vice versa.

TABLE 1

SENSOR/STIMULUS FREQUENCY RESPONSE

SENSOR TYPE

BLUE GREEN RED 1000 2000 3000
S
T BLUE 1.0 0.3 0.1 0.0 0.0 0.0
I
M GREEN 0.3 1.0 0.3 0.0 0.0 0.0
U
L RED 0.1 0.3 1.0 0.0 0.0 0.0
U
S 1000 0.0 0.0 0.0 1.0 0.3 0.1

T 2000 0.0 0.0 0.0 0.3 1.0 0.3
Y
P 3000 0.0 0.0 0.0 0.1 0.3 1.0
E

The next important variable, sensor gain, is determined

by the sensor field of view response (FOV Response). Each

sensor has a gain function which can be selected by the

vehicle designer. This function represents the directional

sensitivity of the sensor's "antenna." it is assumed to be

symmetric about a line normal to the center of the sensor

field of view. Four FOV Response curves are defined for the
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vehicles: linear, parabolic, decay, and sigmoidal. The

linear function is given by

G = M(l - 1/R)A (4)

The parabolic function is

G = M(I - 1/R2 )A2  (5)

The decay function is given by

G = M(exp(-4A/R)) (6)

The sigmoidal function is

G = M(exp(-(2A/R)2)) (7)

where

G = Effective sensor gain

M = Maximum gain (always at 0 degrees incidence)

R = FOV / 2 (in degrees, symmetry assumed)

A = Angle of incidence of the stimulus energy

These functions are presented as a graph in Figure 4.

As can be seen in the plot, the gain of the linear FOV

response curve decreases linearly until it equals zero when

the angle of incidence equals the field of view limit. As

the angle of incidence increases, the rate of change of the

effective gain remains fixed (equal to the negative of max

gain divided by half the field of view). The parabolic

function features an accelerating negative rate of change as
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Sensor Field of View Response Curves

angle of incidence increases. The formula for the decay

function, Equation 6, reveals a decreasing negative rate of

change. The sigmoidal function begins with a negative

accelerating rate of change as angle of incidence increases,

but concludes with a decelerating rate of change.

This range of FOV response functions provides a vehicle

designer with a number of options. Once the function type

is chosen, the designer then specifies the maximum gain and

the FOV range. An array is then generated that contains the
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gain at each angle of incidence from 0 to 180 degrees.

Since symmetry about the 0 degree angle is assumed, sensors

with 360 degree coverage can be designed (-180 to +180

degrees).

The input to the sensor is calculated by summing the

effective energy arriving from each source. The formula is

given by Equation 8.

Et  = zin=1(EiFiG(1/Di2)) (8)

where

E t  = Total effective energy at sensor input

n = Number of stimuli

Di  = Distance from ith stimuli to sensor

Ei  = Strength of ith stimulus

Fi  = Sensor Frequency response to ith stimulus

G = Gain of sensor

The output of the sensor is then given by

Sout = EtFc / C (9)

where

Sout = Sensor output

Et  = Total effective energy at sensor

Fc = Fechner Law coefficient

C = Constant to restrict Sout < 1
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When Fc is chosen to be between zero and one this

function compresses the range of values assumed by the

sensor output. As is noted in the Animal Psychophysics

section of Chapter II, the range of stimuli intensities

extends through many orders of magnitude. In order to

provide sensitivity over this wide dynamic range, a

compressing function is necessary. A value for Fc of 0.2

provides sufficient compression for stimulus intensities of

less than 500,000 units. The constant, C, maintains the

output of the sensor within the range of 0 to 1. This makes

the sensor response consistent with that of the other

neurons in the net.

A total of up to four of the sensors described above

can be designed into any vehicle. Each sensor will have a

related neuron, also treated as a sensor, that represents

its output change since the last time period. This delta

sensor provides sensitivity to rapidly changing sensations

such as those that occur when the vehicle passes a stimuli

in close proximity. Sensor output in this case can quickly

go from a very large number to zero as the stimuli moves out

of the sensor field of view. Since the detection of food

occurs close to stimuli, this feature provides important

information to the vehicle network.

Equation 9 is also used to compute the output of the

delta sensors. Since the delta sensor outputs become large

only under specific circumstances, a larger value for Fc is
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usually selected to provide less compression. A typical

value for Fc applied to delta sensors is 0.5.

With four possible "real" sensors and a delta sensor

for each, the vehicle can have a total of eight sensors.

This number seems to be sufficient to demonstrate the

adaptive concepts that form the objectives of this research

project.

The Interoceptor. The only interoceptor monitors

the energy state of the vehicle. Its primary task is to

signal the discovery and consumption of food. This signal

is used to trigger the adaptive processes. It could be

viewed as a two stage receptor like the sensor described in

the preceding section. The sensor maintains both an

absolute index of the vehicle's energy state as well as a

delta index used to note the change in energy due to food

consumption.

The energy state changes negatively based on the

distance moved in the last time period and is incremented by

a fixed positive amount for each food item discovered. The

energy increment for food ingestion is much greater than the

decrement that can be achieved for movement in a single time

period.

The final item relative to both sensors is the

propagation of the sensor signals to the hidden-layer

neurons. The output of each sensor is connected to each

neuron in the hidden layer (most of these connections are
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not shown coipleted in Figure 3 due to the density of the

connections). Each of these connections has a weight

associated with it. The weights can be positive

(excitatory) or negative (inhibitory). The sum of the

absolute values of weights on the inputs of any neuron is

always equal to one. Note that the sensors are not treated

in this way, since their i:puts represent links to the

outside world (i.e., the sum of their inputs can exceed

one).

The vehicle employ matrix multiplication to propagate

internal signals between layers. The connection weights are

stored in an 8 by 20 raatrix in which the rows correspond to

the output weights relating the sensors to the hidden-layer

neurons. The columns of the matrix correspond to the

connection weights of the neuron inputs to the sensors.

The propagation of the signals is performed by

calculating the dot product of each element of a row vector

containing the output values of the sensors with the column

vectors of the matrix containing the sensor-to-hidden-neuron

weights. The resulting vector represents the input vector

to the hidden layer neurons. At this point the signals are

ready to enter the hidden layer neurons for processing.

The Hidden Layer Neurons. The primary purpoqe of the

hidden layer is to associate sensory inputs with events that

favorably affect the vehicle (i.e., the discovery of food).

Based on each neuron's inputs and the weights on the input
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connections, the hidden layer processes sensory inputs and

transmits processed outputs to the drive motor neurons.

When the energy state delta sensor signals that food has

been found, the neurons with the highest outputs adjust the

weights on their input lines. This we-ght adjustment

process defines adaptation or "learning" in the vehicle.

The neuron itself is a simple device which sums the

products of input signal strengths from each sensor and

their corresponding connection weights. This summing

process is described in the last section as the propagatirn

of signals from the sensors to the hidden layer neurons.

The resulting input signal strength of each neuron is then

processed through a transfer function to calculate the

neuron's output. The function used is

0 = 1/(l + e-K I ) (10)

where

O = Neuron's output

I = Neuron's input

K = Constant to control the slope of the curve

There aru several important aspects of this formula as

a neuronal activation function. First, the formula is

defined for all values of I. Second, the output, 0, is

constrained to the range 0 < 0 < 1. This offers protection

against large signal surges that can disrupt operation of

the net or lock it into undesirable states. But, most
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importantly, the shape of the function allows signal

strengths in the mid-range (about 0.5) to exhibit maximum

sensitivity to small changes while reducing sensitivity

beyond this area (Wasserman, 1989:15-16). To illustrate,

reference Figure 5. This figure plots the function

represented in Equation 10 with the variable K = 1. Note

that at the point where the input equals 0.5 the slope of

the line is at a maximum. Therefore, small changes in

the input strengths of signals near 0.5 exhibit

proportionately greater impact on the output than at other
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Figure 5
Neuron Transfer Function

59



strengths. With connection weights and outputs confined

between zero and one, the occurrence of signals strengths in

the 0.5 range is relatively large. Since the sum of the

absolute values of the inputs cannot exceed one, the value

for K used in tle vehicles has been set to three. This

value ensures that neuron outputs can use most of the zero

to one range.

The learning algorithm employed by both the hidden

layer and the motor drive neurons is attributed to Kohonen

(Wasserman, 1989:67; Soucek, 1989:76). It features a

strategy in which connection weights are changed based on

the magnitude of the inputs when the learning is triggered

and the existing connection weights. The actual formula is

given by

Wn = Wo + C(I - Wo) (11)

where

Wn  = New connection weight

Wo  = Old connection weight

C = Learning rate

I = Input strength on the connection

This algorithm has several important features. First,

if the node weights sum to one prior to learning, they also

will sum to one after adjustment. This insures that all the

node weights will not eventually go to one. The second

feature is related to the importance of the signal strength
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to the weight adjustment. The training function results in

the connection paths with signals greater than their

existing weights having their weights adjusted upward.

Conversely, the paths with weights larger than the magnitude

of their inputs have their weights adjusted downward. The

effect is to drive the ratios of the weights to be equal to

the ratios of their usual input values. This will tend to

maximize the neuron's output for a given input pattern.

To understand the adaptive process in operation,

imagine the vehicle chancing upon some food. Since the food

is found in the vicinity of a stimuli, some sensors are

likely to have high outputs. When the learning algorithm is

triggered, the neurons with the highest sensory inputs will

have their weights adjusted upward. In similar future

circumstaces these neurc.s will have higher outputs that

are sent to the motor drive neurons. These higher outputs

will exert more influence on the drive neurons than those of

less adapted hidden layer neurons.

Note that many food finding events may occur with small

sensor outputs. If, for instance, the vehicle has passed

the stimulus with the food and is in the process of

increasing its distance from the source, the stimulus may be

completely out of the field of view of the sensor. In

actuality this is a common occurrence. To improve the

vehicles' ability to deal with such instances, they need
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short term memories (STMs). These memories will allow the

neurons to train based on input states from the recent past.

The STM scheme used in this project is based on a

characteristic of many biological neurons. Once stimulated,

neurons tend to fire at an accelerated, but decaying, rate

even after the input is removed. This "firing rate" memory

encoding provides some ability to correctly associate

rapidly changing signals with favorable, recently-past

events. The "ringing" of the recently excited neuron

provides the input values to ensure additional opportunities

to form the "right" associations.

While this memory scheme can help the formation of some

associations, it can also hinder performance. When applied

to sensory information, for instance, the result is less

responsiveness when the vehicle is close to a stimulus.

This is due to the affect of the "after image" from the

sensor firing rate decay. The vehicle requires more time to

sense the rapidly changing environmental situation. The

software contains a switch to enable this feature to be

turned "on" for training the hidden layer. It can then be

turned "off" for the hidden layer neurons when the drive

layer is being trained.

The output of the hidden layer neurons is propagated to

the motor drive neurons in the same manner as is done from

the sensor to the hidden layer. The dot product is

calculated for an array containing the hidden layer outputs
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and a matrix containing the hidden layer-to-motor drive

neuron connection weights. The resulting three element

vector becomes the input to the motor drive neurons.

The Motor Drive Neurons. As is indicated in Figure 3,

the purpose of the three drive neurons is to provide three

possible movements: turn left, go straight, turn right. The

three motor drive neurons are identical to the hidden layer

neurons. However, where as the outputs of all neurons in

the hidden layer are propagated to the drive neurons, the

drive neurons work in a somewhat winner-take-all fashion.

Only the neuron with the highest output is trained when food

is discovered. The reason for this is related to another

difference between motor drive neurons and hidden layer

neurons.

This second difference is related to the manner in

which the drive neurons' outputs are used. Among the drive

neurons only one neuron affects the operation of the vehicle

directly. The drive neuron with the highest output

determineL what direction the vehicle will go. When food is

found, it is assumed that the last move made was favorable

to the discovery. Therefore, the probability the vehicle

will make the same movement with similar patterns of stimuli

will be enhanced by training the neuron which controlled the

last movement.

The actual movement made by the vehicle is determined

by the outputs of the drive neuron. When the "go straight"
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neuron has the highest output, the vehicle moves on the same

heading a distance proportional to the output of the neuron.

The "turn" neurons (D1 and D3 in Figure 3) also cause the

vehicle to move a distance proportional to their output, but

the radius of the turn made is based on the ratio of the

winner neuron's output to the output of the other "turn"

neuron. This maintains the Braitenberg vehicle drive

concept in which the relative speeds of the drive motors

determine the course of the vehicle. A heuristically

derived formula for calculating the turn radius was chosen.

Thi- formula is given as

R = 5(10 - 10(O w - 0)) (12)

where

R = radius of the turn

0 = output of winner turn neuron

0 = output of loser turn neuron

When the simulation was first run, the test vehicle had

15 hidden layer neurons and 4 true sensors (8 including the

delta sensors). The vehicle tended to adopt a single

behavior pattern despite the irput stimuli. If the first

movement made was a turn, it continued to turn. This seemed

to be due to the randomization of the initial node

connection weights and the number of nodes. Apparently, one

output neuron always had the highest output, thereby, taking

control of the vehicles movement. This created a serious
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problem for the vehicle. If learning did occur it could

only strengthen the control of the winning neuron. This

would perpetuate the single-move condition.

The solution was to begin the vehicle's "education"

with near-random motion. Based on an exponential decay

function, the contribution of the neurons' connection

weights to the output of the neurons is kept small. The

rest of the output is made up of random inputs injected

every 20 time periods. This results in the vehicle taking a

pseudo-random walk. As the vehicle matures, less and less

randomness is injected until finally the beha-'ior is based

solely on the connection weights.

This "childhood" feature is also used to force the

vehicle to experiment with other behavior patterns when the

energy state is either too high (satiated) or too low

(starving). The idea is to provide opportunities for the

vehicle to learn superior behavior patterns even if

experiencing some success with the current connection

weights.

The "age" of the vehicle is used in another way to

modify learning. Young vehicles experience faster learning

based on a higher values for the learning rate variable in

Equation 11. This added learning rate gradually decays

until the rate reaches a small steady state value. At this

time the "old dog" can still learn new tricks, but it takes

longer than does a young pup.
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This concludes the description of the general design of

the vehicles. To provide a better understanding of the

simulation program the next section steps through the

operation of the code during a complete cycle of movement.

The steps equate to the main section of the simulation code.

The Simulation Operation

The simulation program begins by initializing the data

structures and retrieving the records which contain the

definitions of the vehicle and environment. Following these

operations the program retrieves a file of distance measures

that are stored in an array. This array provides rapid

access to distances between points in the simulation world.

The data is referenced by entering the differences in the X

and Y coordinites of the two points. This array structure

eliminates the need to perform squaring and square root

operations to calculate the distance values. This speeds

the program execution.

The program next generates a report header containing

information about the vehicle run conditions: date,

environment name, vehicle name, beginning connection

weights, etc. The video display is then switched to

graphics mode. The environment and vehicle are displayed on

the screen. Small rectangles represent the stimuli while a

diamond figure with a protruding line Lepresents the

vehicle. The line indicates the vehicle's current heading.
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The program then calculates the sensor stage input

based on the location of the stimuli relevant to the

starting location of the vehicle and the sensor/stimuli

characteristics found in the vehicle and environment

definition records. Equation 8 defines the relationship

between the variables and the total input to each sensor.

The results of the calculation are stored in an array.

As the movement calculations begin, a timer is set to

record the number of iterations made through the movement

loop. The loop terminates when the user entered value for

stop time is met.

The loop begins by calculating the output of the sensor

stage using the array containing the sensor input data.

Equation 9 is used to generate these values. The outputs

are stored in another array for use by the matrix

multiplication routine that propagates the signals to the

hidden layer neurons. This routine uses the sensor output

array and the sensor-to-hidden layer array of connection

weights to generate the inputs to the hidden layer. These

inputs are also stored in an array.

The hidden layer input array is used along with

Equation 10 to calculate the output of the hidden-layer.

This output is propagated to the motor drive neurons in the

same manner as was the sensor to hidden layer signals. The

propagated signals become the input to the motor drive

neurons.
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The drive neuron outputs are calculated as are the

hidden layer outputs with one exception. To implement the

short term memory, the output value of each neuron is

compared to its value at the last time period multiplied by

a decay factor. The output becomes the greater of these two

values. The result of this operation is that the neuron

exhibits a retention of output for a few time periods even

after all inputs go to zero. The intention is to improve

the association of sensory patterns from the hidden layer to

the discovery of food even when the vehicle has passed the

stimuli and no actual stimulation is at work. In this case,

the neurons' outputs will continue to "ring" even while the

sensors show no input. This ringing can provide the

training algorithm (Equation 11) with a more accurate

assessment of the cause and effect relationships when

adjusting the connection weights.

Once the motor drive neuron outputs are calculated, the

actual movement can be generated. Equation 12 is used to

determine the radius of the arc traveled (if a turn neuron

has the greatest output). The actual distance is

proportional to the output of the most active neuron.

Following the move, the program determines whether food

was found. The probability is based on the inverse square

of the average distance of the vehicle from each stimuli

multiplied times the distance moved. More than one food

item can be found during a move. If the number found is
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greater than zero, the node connection weights are adjusted

using the learning algorithm represented by Equation 11.

The value used for the rate-of-learning constant is

proportional to the number of food items found. At this

point, the stimuli energy at the sensors is recalculated

based on the new location of the vehicle and the loop begins

again.

Note that new signals entering the neural network are

propagated through the entire network during each time

cycle. In some networks, feedback loops and propagating

signals are calculated iteratively until the network assumes

a stable state. This approach, while more faithful to

simulating hardware implementations of neural networks, was

impractical for a microcomputer-based simulation intended to

run in real time.
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IV. Vehicle Evaluations

As was mentioned earlier, the acid test for success in

this project was the demonstration of adaptation or learning

by the vehicles. A number of methods might be used to

verify whether the vehicles were successful at improving

their performance over time (the operational definition of

learning for this effort). First, one must select a

credible measure of merit for performance. A number of

metrics are available from the vehicles and their behavior

including average distance to food-related stimuli, number

of learning events (these are triggered by discovery of

food), amount of food found, and vehicle energy states over

time.

Performance Measures

Average distance to food-bearing stimuli lacks sensitivity

since the vehicles are confined to a one-screen world. Some

behavior pattern also emerge where the vehicles orbit

stimuli, but never get close enough to find food. These

vehicles will get relatively small average distance scores,

but without actually having learned to find food.

Although the number of training events will be

positively correlated with energy state, it will not be a

sensitive measure due to the possibility of multiple food

items being found in one time period. Therefore, two

vehicles with identical numbers of training events may
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differ considerably in their actual success rates of finding

food.

The number-of-food-item.-found provides more

information on vehicle success than the other measures. Its

only short coming is a lack of sensitivity to food finding

efficiency. Since the vehicles expend energy by moving,

more successful vehicles should find more food with less

movement.

For this reason, energy state over time provides the

most accurate performance measurement. Since multiple food

items can be found in a single move, it will deliver more

precision than analyzing the number of training events

alone. It also contains an element of food finding

efficiency not included in the number-of-food-items-found

measure since it takes into consideration the distance moved

as well as the food found.

The Evaluation Vehicles

The initial intent was to design a controlled

experiment in which vehicles with randomized starting

connection weights would be run over a period of time. The

energy scores would then be analyzed for significant trends.

This would require a number of vehicles to be tested to

ensure that results were not an artifact of the beginning

connection weights.

During the validation of the simulation code, another,

more compelling, test paradigm became apparent. In order to
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determine whether the program was performing as intended,

several of the basic Braitenberg designs were built and

tested (see Figure 1). Vehicle IA is intended to avoid the

stimuli. What would haipen if this vehicle were provided

opportunities to learn to find food? Would it develop

stimuli-seeking behavior like that of Vehicle IB? This

suggests a true acid te t Dr the learning algorithm.

This concept was chosen for the test paradigm. The

beginning vehicle was cnfigured as shown in Figure 6. Two

symmetrically-placed sensors provide inputs to two hidden

layer neurons. The sensor-to-liidden layer connection weight

values between components on the same side of the vehicle

are fixed at one. Cross-side connections weights are fixed

at zero. The "delta sensors" were effectively disabled by

setting their connection weights to the hidden layer to

zero. Since the hidden layer is omitted in the "avoider"

vehicle (see Figure 1, Vehicle 1A), training for this layer

is disablec.

The hidden layer neurons feed the drive layer with

starting connection weights shown in Table 2. Note That the

middle drive neuron has both of its input connection weights

set to zero. Since it will never see inputs greater than

zero it can never "win" against the other neurons.

Therefore, it will never receive training and its weights

will never change. This architecture effectively duplicates

the "avoider" vehicle (Vehicle 1A) from Figure 1.
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Figure 6
Evaluation Vehicle

The environment used for the evaluations contained

three food-associated stimuli whose type corresponded to the

sensor type on the vehicle. The sensors were chosen to have

parabolic field of view responses with a maximum gain of 10

and a cut-off of 30 degrees (see Figure 4). The

sensors'look-angles were set symmetrically at 30 degrees

from the vehicle centerline. This resulted in Sensor 1

having a -30' look-angle while Sensor 2's look-angle was set

to 30'. During training, the learning rate coefficient (see

Equation 11) was made a function of success rate by setting
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it to 0.2 times the number of food items found in the last

time period.

Table 2

Hidden Layer-to-Drive Layer Connection Weights
for Evaluation Vehicle

Hidden Layer Drive Layer Connection

Neuron Neuron Weight

1 1 1.0

2 1 0.0

1 2 0.0

2 2 0.0

1 3 0.0

2 3 1.0

All runs lasted for 8000 time periods. For the first

6000 iterations, the "childhood" random movement feature was

enabled. This feature provided random behavior to the drive

layer in linearly diminishing amounts until, at time equal

to 6000, all behavior was controlled by the connection

weights. As explained in Chapter Three, the childhood stage

provides the necessary opportunity for desired learning by

temporarily forcing the vehicle out of its "natural"

behavior pattern.

Even after the childhood stage ends, if the vehicle

experiences an extended interval without a learning event a

short interval of randomness is inserted. This can kick a

vehicle out of an unprofitable orbit about a stimuli or
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provide opportunities for new learning experiences to a

partially successful vehicle.

Evaluation Results.

The nature of this evaluation suggested another success

metric in addition to energy state statistics. Since the

aim was to demonstrate the reversal of behavior patterns

from avoiding stimuli to seeking them, the node weights for

the simple test vehicles provide important information. Of

interest are the node weights between the hidden layer

neurons and drive neurons one and two. When the weights

between both hidden layer neurons and their opposite-side

drive neurons exceed those to their same-side drive neurons

the vehicle behavior will reverse.

This behavior reversal will occur when connection

weights HI-D3 and H2-DI both exceed 0.5 (recall that all

node weights into a neuron sum to 1.0). For this

evaluation, a graph indicating the change in these

connection weights can effectively show the progress of the

learning process. Such a graph is presented in Figure 7 for

a typical evaluation run. Note that the scale for

connection weights HI-D3 is located cn the left ordinate and

the scale for the weights H2-DI is on the right ordinate.

Also note the reversal of the direction of increasing

connection weight on the two scales. This provides maximum

clarity of the learning artifacts.
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Figure 7
Hidden Layer-to-Drive Layer Connection Weights

The data in Figure 7 indicate a rapid initial

convergence toward the behavior changing point. As the

connection weights approach the break point, however, the

monotinicity disappears and the values tend to waver just

above and below the 0.5 mark. The rapid convergence is

attributable to the nearly 50-50 odds that a particular

reinforced move will be "right" or "wrong." Recall from

Chapter III that the drive neuron which is trained following

a learning event is the one with the highest output during

the last time period. The assumption made is that the
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vehicles will be rewarded more often when they turn toward

the stimuli than when they turn away.

This effect is not great, however, since the vehicles

do not tend to continue a particular movement for long

during the latter stages of the childhood phase. In fact,

the vehicles often exhibit a servo-like hunting response in

which the heading changes rapidly from left to right and

back again. If the trajectory carries a vehicle close to a

stimuli while exhibiting this behavior it is almost as

likely to be wrong (turning away) as it is to be right

(turning toward the stimuli) when it encounters food.

It is often the last training event before the

childhood expiration that dictates the fortune of the

vehicle. Correct learning results in a vehicle which begins

to be rewarded and has its connection weights tipped

permanently toward the "attractor" configuration. If the

last training is incorrect, the vehicle loops across the

corners of the screen in an attempt to maintain maximum

distance from the stimuli. In this case the node weights

are not changed since the vehicle never approaches the

stimuli. Training can, however, occur in this case if the

temporary childhood feature senses extended periods without

food discovery. If the resulting random movement results in

food discovery, the weights can be "tipped" toward the

attractor scheme. They will then be quickly reinforced by

additional "correct" learning events.
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Inspection of the vehicle-energy-over-time plot,

Figure 8, along with the connection weights chart, Figure 7,

demonstrates the sensitivity of vehicle success to the node

weights. The vehicle energy is relatively steady-state

during the random motion of its childhood phase. During

this period food discovery is largely a matter of chance.

At childhood's expiration (time = 6000), however, the

reoriented connection weights take control and result in

numerous food discoveries. Vehicle energy quickly soars to

the maximum of 30,000 units. This energy glut is

precipitated by a connection weight separation of only a few

percent on each side of the 0.5 threshold.

Vehicle Energy (Thousands)

301

27 L
24

E/
21 /

18-

15 K

12-

9,
0 1 2 3 4 5 6 7 8

Time Periods (Thousands)

Vehicle Energy End of Childhood

Figure 8
Vehicle Energy Over Time
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As was mentioned earlier, the results shown here are

not necessarily the norm. On some runs the connection

weights do not nake the reversal state, only one link does,

or the weights reverse several times, but are not in the

correct state when childhood ends. In order to investigate

possible reasons for the lack of learning robustness, a

switch was added to the simulation to allow an experimenter

to control reinforcement of behavior. The result is a sort

of electronic "Skinner box" in which behavior can be

"shaped" (see Chapter II, Operant Conditioning). By

providing a high frequency of correct learning events, the

connection weights can be made to rapidly reverse their

strengths. This suggests problems exist in the vehicles

with the association of movement and sensor patterns. Most

likely the problem lies with learning events occurring after

the sensors have lost sight of the stimuli (as the vehicle

passes close by). Training may often be occurring to a

blank field of view in reduction of weight for desirable

input patterns. Coupled with the tendency for movements to

change rapidly, the opportunity for incorrect learning is

pronounced.

This evaluation resulted in a mixed review. While the

vehicles sometimes manage to achieve the goal state, they

also sometimes fail. The normal time restrictions on thesis

projects precluded a test program involving the full range

of parameters that can be "tweaked" in the simulation
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software. It is quite possible that there is a pony in

there somewhere waiting for the right young man with a

shovel (and high-topped shoes)!
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V. Summation

This chapter presents three concluding discussions.

First, is a project synopsis concentrating on the simulation

design features and how they correspond to animal models of

learning. The second section, "Conclusions," presents the

author's assessment of the project. The final section

presents recommendations for further study and analysis.

Synopsis

The objective of this effort was to develop a computer

simulation that enables an experimenter to design and

evaluate simple autonomous vehicles capable of exhibiting

unsupervised learning. The model for the vehicle

architecture was taken from the treatise by Valentino

Braitenberg, Vehicles: Experiments in Synthetic Psychology

(Braitenberg, 1984). The implementation of the simulation

was heavily influenced by artificial neural network research

and investigations of animal learning from the experimental

psychology literature.

The simulation software, written in Turbo Pascal (see

Appendix), provides a great deal of flexibility in the

design of vehicles and their environments. Six types of

stimuli and corresponding sensors are available to the

experimenter as well as control of sensor fields of view,

look-angles, and antenna gains. Each vehicle can have a

maximum of four primary sensors and four associated "delta"
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sensors which produce first derivatives of the primary

sensor outputs.

The vehicle "brains" are made up of two layers of

artificial neurons employing the customary sigmoidal

logistics function to provide non-linear outputs. The two

layers are interconnected by adjustable weighted links that

propagate signals through the neuronal network. A software

switch allows the hidden layer of up to 20 neurons to

imitate mutual inhibition by adopting a "winner-take-all"

output scheme.

The output layer of three neurons controls the

vehicles' movement. The neuron with the highest output

dictates left turn, straight, or right turn moves. Distance

moved is proportional to the output of the winning neuron.

Turn radii are determined by the output ratios of the two

"turn" neurons.

The neurons have a primitive short term memory based on

a feature of natural neurons. Once stimulated, neurons tend

to reduce their output as an exponential decay even if input

to the neuron falls to zero. This provides a simple means

of relating present events to past ones.

The learning scheme is one attributed to Teuvo Kohonen

(Wasserman, 1989:67; Rogers, et al., 1990:68). The

implementation ignores certain features of Kohonen's scheme

(establishment of "neighborhoods" of similarly responding

neurons) due to the small size of the network.
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Neuronal learning is triggered by the discovery of

"food" in the environment. The food is distributed about

designated stimuli to which the vehicles' sensors respond.

The learning event results in the vehicle adjusting its

connection weights between neurons. Adjustments are

intended to increase the probability of responding to

sensory patterns in the future in the same way that led to

the past discovery of food. The assumption is that due to

the increasing density of food as one gets closer to the

stimuli, turning toward stimuli will result in more

behavioral reinforcement than turning away.

The simulation software runs sufficiently quickly to

operate in real-time on an Intel 80286 processor-based

microcomputer. The program records statistics during

evaluation runs including vehicle energy states, inter-

neuron connection weights, initial conditions, and numbers

of learning events. Vehicles can be "saved" at the end of

runs to retain the connection weights they have learned.

Conclusions

The simulation design incorporates features to enable

the vehicles to imitate some aspects of the learning

behavior of animals. Animal learning phenomena such as the

weakening of associations between events displaced in time

is simulated using the decaying short term memory trace

discussed in the preceding section. The role of

reinforcement magnitude in learning is also mimicked by
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multiplying the number of food items found times the base

learning coefficient before adjusting connection weights.

The overlap of the frequency responses of some sensor-

types provides opportunities to imitate generalization of

learning to similar stimuli. Since the sensor output is

reduced for non-matching sensor-stimuli pairings, the

response magnitude will be reduced as it is for animal

subjects (see Chapter III, Classical Conditioning).

The simulation demonstrates operant conditioning in the

same manner as is done with animals: the actions of the

vehicle are, in a sense, voluntary. The incorporation of

provisions for "shaping" vehicle behavior provides an

additional analogy to animal learning. A final feature of

the simulation provides the vehicle with the potential for

learning as was noted by puzzle-box experimenters. The

phenomenon of cats repeating specific movements to gain

release from confinement when any number of means were

effective at opening the door (Mazur, 1986:120,122) is

imitated by the learning of the drive layer. Movements

which lead to reinforcement are more likely to reoccur in

future circumstances.

The vehicles, like animals, also have two-stage

memories. The decay function of active neurons serves as

short term memory while long term memory is effected by the

connection weights between neurons. Short term memory fades

quickly while the long term memory is retained until

supplanted by new learning.
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The vehicles' sensors are given a large dynamic range

like natural sensors. They also use a physical magnitude-

to-sensation level mapping that is close to that found in

human subjects (Equation 2).

At the neuronal level, basic functions imitate those

found in some biological units. Inputs can stimulate or

inhibit receiving cells. The vehicles' neurons also provide

analogies to both spatial and temporal summation. Finally,

the connection-weight changes are analogous to the

manifestations of learning found by a number of researchers

at the synaptic level (Alkon, 1989:44).

Evaluations of a few vehicle designs indicate that the

vehicles are not always successful at learning the desired

associations. The problem appears to center on the

unreliability of reinforcement. Many times incorrect

behavior can be reinforced, thus negating previous learning.

The success of the test vehicles was very sensitive to small

changes in the connection weights. This effect was

exacerbated by the sparsity of the neural network in the

test vehicles.

Recommendations

Due to time limitations, the simulation received only

cursory evaluation. There are a numerous options for

designing vehicles that have not yet been explored. For

instance, changes to the "avoider" vehicle giving it wider

fields of view, overlapping forward coverage by both
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sensors, and better side visibility may improve its ability

to learn to turn toward stimuli as opposed to turning away.

There may also be reasons to improve the short term

memory beyond the simple version implemented in the

simulation. A better scheme for short term memory might be

a bucket brigade of delay elements which all feed back to

the neuron (Figure 9). In this arrangement, output from the

primary neuron passes through the bucket brigade, being

ulayed at each bucket. The feedback link from the first

bucket presents the "memory" of the neuron's output at thL

last time period. The second element feeds back the output

from two time periods ago, and so on (MacDonald, 1988:510).

The feedback signals would be subjected to a decay function

to preserve the relative importance of the most recently

occurring events over earlier events.

N t t-nr

Neuron output

Figure 9
Bucket Brigade Short-Term Memory
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This short term memory scheme combined with the

learning algorithm could result in formation of stronger

associations between time-separated events that occur with

relatively uniform delays. Such a short term memory scheme

may allow associations and conditioning behavior to form

that are similar to those seen in classical and operant

conditioning under the various temporal experimental

paradigms (see "Operant Conditioning," Chapter II).

In conclusion, the product of this thesis effort is a

significant tool for experimenting with artificial neural

networks. It allows the user to evaluate neural network

behavior in much the same manner as that used by

psychologists in studying the learning behavior of animals.

Although the network is somewhat sparse, the visibility

associated with its working provides greater opportunitier

for identifying relevant relationships.
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Appendix: Simulation Source Code

Copyright 1990

{ Turbo Pascal 5.5 code to implement the simulation described in this }
{ document. The code is fairly well ccamented, but is presented here }
{ for illustrative purposes only. All rights outside of Goverent }
{ use are specifically reserved. Inquires should be posted to the }
{ address found in the Vita at the end of the thesis document.

{$IFDEF CPU87} {Is 8087 in this machine?}
{$N+} {Ccrpile 8087 code }
{$ELSE} {else}
{$N-} {Emulate 8087 operation }
{$ENDIF}

{$R+}
{$M 32000,0,655360}

Program RunTest;

USES DOS, CRT, GRAPH, VCOORD, PRINTER, KYBD;

TYPE

FIype = (Linear, Sigmoid, Decay, Parabolic);

Stizype = (R {ed} , G {reen} , B {lue} ,
Hzl {000} , Hz2 {000} , Hz3 {000} );

SenResp = array[0..5, 0..5] of Real;

FileName = string[20]; {File name w/o ext.

RunRec = record {Control rec for run }
RunFileName : FileName; {Assume run extension }
VehName : FileName; {Assume .veh extension }
EnvFileName : FileName; {Environment file name .env}
TrackFile : FileName; {Vehicle movement data . trk}
StatFile : FileName; {Statistics on run .sta}
RunStart : Integer; {Starting tine }
RunLength : Integer; {Number of time periods, t }
BeginX : Integer; {starting x,y locations }
BeginY : Integer;
BeginHdng : Integer; {Vehicle heading in degrees}
Decay : Real; {Exponent FOR decay FORmula}

END;
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StimRec = record {Defines stim attributes I
StinuJius Stinatype; {Stim type (R,G,B,Hzl. .3)}
Nutrient Booljean; {Nutrient assciated? }
Pos Boolean; {.ReinFUIce/punish}
StirnX Integer; {Stimulus lcation}
StimY Integer;
StinEnrg LongrInt; {Stimulus energy}

END;

StiruliData = Array(1. .8] of StirnRec;

EnvRec = record {Defines world}
MaxXScrn :Byte; {World dinensions}
MaxYScrn : Byte;
TX,TY :Integer; {Top lft/bottam rt corner}
BX, BY :Integer; f virtual screen coords}
StiniNtun : 1. .F {How many stinuli? Max 8}
Stimuli :StiMUiL.Data; {Stinuli data}

END;

SenFovResp =array[0. .180] of Real; {Angular gain of sensors}
{[ang of stim]}

Sensor =recoru {Defines scansor attribute}
Si~esp :Stinfilype; {Sensor response}
CurveType :f~ype; {Sensor FOV response }
SAngle :-180..180; {Sensor angle to vehicle}
MaxGa:inm Real; {Peak sensor gain}
Cutoff 1 ..180; {Max sensor off bore resp}
Curve : Sen FovResp;{Gain vs angle of stim )
SenK :Real; {Stevens law CONSTant )
Sen2K :Real; {Stevens law exp FOR delta}

END;

TIout Record {Energy decay data (S'IN)}
Time Word;
out :Real;

END;

SenArray = Array[1. .4] of Sensor;

Senaut.Array = Array(1..8] of Real;

S_0_A = Array[1..8] of Tout;

SenTlWts = Array[1..8,1..20] of Real;

TiOut = Array[1. .20] of Real;

T_0_A = )Array(1..20] of Tout;

T1T2Wts = Arrayjjl..20, 1..3] of Real;
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T2Out = Array[i..31 of Real;

T2_0_A =Array[1..3] of IXut;

VehicleRec = record {Vehicle definition}
VehNare FileNan'e;
VehX : Integer; {Veh coords rel to scm }
VehY : Integer; f center. Max-- 100,100
VehHeading :Inte-ger; {Heading in degrees }
VehEnergy :Integer;
Age : Word; {Previous age of vehicle}
MaxEnergy :Integer;

: Byte; {Motor response function )
FstMatlnh :Boolean; {lst layer nrutual inhib?}
SndMitlnh :Boolean; {2nd it
Sen Num : Byte; {Number of sensors (1-4)
Sen~ecs :SenArray; {Sensor definitions }
Sen Hz Resp :SenResp; {Freq resp of sensor/type.
Sen OJ Ou SenOutArray; {Sensor [il output I
sndiltArray :S 0 A; {Sensor energy decay data).
Sen Ti Wts :S!enrflWts;{Sensor-lst T-cell wts I
NSuin : Byte; {Sum hidden layer nodes I
Ti Out :TiOut; {lst T-cell outputs
'l utArray :T 0 A; {T1 energy decay data }
Ti T2 Wts : TTWts; {ist T-cell-2nd Tcell wts}
T2 Out T20ut; {2nd T-cell outputs }
T -OutArray : T2_0_A; {T2 energy decay data }

END;

StirnDist record {Data to ccapute avg dist.
DistSum Longlnt; {Sum of distances to Stim.
STy'pe :StintIyp; {Stizrulus type}

END;

AvgStDist = array[i. .8] of StimDist; {Data on Veh dist to Sti---.}
RunStatRec = record {Vehicle statistics }

AvgStiinDist :AvgStDist; {Avg dist to 4 stixruli )
Avg VehEnergy : Real; {Veh energy (Running avg-) }
NuinPts : word; {Numlber of data point (T)}

END;

TrackRec =Record

NewX : Integer;
NeWY :Integer;
NewHdg :Integer;
Dist :Real,
Tine : Word;
END;

TrackRecArray = Array [1.. 100] of TrackRec;

TrackFile = file of TrackRec;

90



RunStatFile = file of RunStatRec; {Holds run statistics }

RunFile = file of RunRec;

VehFile = file of VehicleRec;

EnvFile = file of EnvRec;

Txt = Text;

DistAng = record
Dist : Byte;
Ang : 0..90;
END;

StimuliDat = record
Dist : Integer;
LDist : Integer;
Ang : 0..360;
END;

StimArray = Array[l. .8] of StimuliDat;

StmDatArray = Array[l..5151] of DistAng;

SumSqr = Array[l..8] of Real;

Buffer = Array[i..100] of RunStatRec;

MDecay = Array[0..10] of Real; {ST memory decay factor/tine }

SDecay = Array[O..5] of Real; {ST memry decay FOR sensors }

Layer2Train = (Hidden, Both, Drive); {Layers that can be trained }

VAR
Answer : Char;
RRec : RunRec;
VRec : VehicleRec;
ERec : EnvRec;
FuncType : FIype;
FileStr : String;
X, Y, T : Integer; {Current position, Time}
OldX, OldY : Integer; {Last position }
Hdg, OldHdg : Integer; {Vehicle heading in degrees}
Loop, i : Integer; {Loop control VARiables }
Start, Stop : Integer; {Tine FOR run start, stop}
StiTliArray : StimArray; {Data FOR stim rel to veh}
Dat : DistAng; {Temp record }
DatFile : File of DistAng; {File handle}
RFile : File of RunRec;
EFile : File of EnvRec;
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VFile : File of VehicleRec;
TFile : TrackFile;
RnFI : Text;
EFName, VFName : FileName; {Env/Veh File nams }
RnFiName : FileNare;
StimDatArray : StmDatArray; {Look-up table of dist/ang}
SumSqrs : SumSqr; {Array of stim dist sum sqr}
SFV : SenFovResp; {Sensor FOV gain [0..180]1
SNum, NcdeSum : byte; {Num sensors, hidden nodes
A : byte;
StatRec : RunStatRec; {Run statistics record }
StatBuff : Buffer; {Tenp buffer FOR stat data}
Buff : Array[l..1024] of Byte;{Run data text buffer
SBIndex : Byte;
TrkRecArray : TrackRecArray; {Buffer FOR move data }
TrkIndex : Byte; { Index to TrkRecArray }
MoveDist : Integer; {Distance last moved }
Test,Video : Boolean; {Switchs FOR debug/video }
PosTrainNum : Word; {Cum num pos learning events
NegTrainNun : Word; {Cum neg learning events I
DeitaPosTrnNum : Vbrd; {Pos Trn events this period
DeltaNeqgrnNum : Word; {Neg trn evevts this period
Day : Word; {Wait betwn loops (sha-ing)}
ChildHood : Integer; {Period of ranDOn mover ._nt}
Reward : Integer; {Nutrient found }
Punish : Integer; {Punishment incurred }
NodeTrain : Byte; {Number of nodes to train }
PrntRep, Sign : Boolean; {Print report switch }
Resp,LRtF : Char; {Query Resp/ learn rate fn
LastReward : Integer;
OpCond : Boolean; {Operant Conditioning Flag
LRtC : Real; {Learning rate CONSTant }
Cease : Char;
L2T : Layer2Train; {IDs layer(s) to train }
WrtReo : Boolean;
WnTkAIl : Boolean; {fImplment winner take all

{ neurons in hidden layer }
SenSTM : Boolean; {Sensor STM switch

CONST
S H R : SenResp = ( {Freq resp of sensor/type

(1.0, 0.3, 0.1, 0.0, 0.0, 0.0),
(0.3, 1.0, 0.3, 0.0, 0.0, 0.0),
(0.1, 0.3, 1.0, 0.0, 0.0, 0.0),
(0.0, 0.0, 0.0, 1.0, 0.3, 0.1),
(0.0, 0.0, 0.0, 0.3, 1.0, 0.3),
(0.0, 0.0, 0.0, 0.1, 0.3, 1.0));

MemDecay : MDecay = (1.0, 0.86, 0.74, 0.64, 0.55, 0.47, 0.41, 0.35,
0.30, 0.26, 0.22);

SENDecay : SDecay = (1.0, 0.67, 0.44, 0.30, 0.20, 0.13);
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Erase : Word = 0;

Drw : Word = 15;

{******************** PROCEDURES AND FUNCTIONS **** *****************}

Function Greater(A, B : Integer) : Integer;
BEGIN

IF A >= B THEN
Greater A

ELSE
Greater = B;

END;

{------------------------------------------------------- }

Function Lesser(A, B : Integer) : Integer;
BEGIN

IF A < B THEN
Lesser A

Lesser B;
END;

----------------------------------------------------------- }

Function GetAngle(Dx, Dy, Ang : Integer) : Integer;

BEGIN
IF Dx >= Dy THEN

IF Abs(Dx) >= Abs(Dy) THEN
BEGIN

IF Dy >= 0 THEN
GetAngle := Ang

ELSE
GetAngle 360 - Ang

END
ELSE

BEGIN
IF Dx >= 0 THEN

GetAngle 270 + Ang
ELSE

GetAngle 270 - Ang;
END

ELSE
IF (Abs(Dx) >= Abs(Dy)) THEN

BEGIN
IF Dy < 0 THEN

GetAngle := 180 + Ang
ELSE

GetAngle 180 - Ang
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END
ELSE

BEGIN
IF Dx < 0 THEN

GetAngle 90 + Ang
ELSE

GetAngle 90 - Ang
END

END; {Function GetAngle}

Function X to theY(X,Y : Real) : Real;

VAR {Raise X to the Yth Power}
R :Real;

BEGIN
IF x > 0 THEN

BEGIN
R := Y * Ln(X);
X to the Y Exp(R)
END

ELSE
X to the Y 0

END;

{ ------------------------ ------ ------- - -- -

Procedure LoadSENData(Range : Byte ;Gain : Real; CType FIype;
VAR FOV :Sen FOV Resp);

{Calc FOV response, put in FOV}
VAR

Loop Byte;

BEGIN
FOR Loop := 0 to 180 DO

BEGIN
IF Range = 0 THEN

FOV[i] 0

ELSE
IF Loop > Range THEN

FOV[Loop] := 0
ELSE

CASE CIYpe OF

Linear : FOV[ Loop] := Gain - (Gain / Range) * Loop;

Sigmoid : FOV[Loop] := Gain * (Exp(- Sqr(2 *
Loop / Range)));

Decay : FOV[Loop] := Gain * (Exp((-Loop * 4)/Range));
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Parabolic :mFV[Loop] :=Gain - (Gain / (Sqr(Rangef)*
(Sqr(Loop))

END {CASE}
END {FUR Loop}

END; {Procedure LoadSENData}

------- ----------------------- - - - - -

Procedure SetUp (VAR Strt, Stp, CHood Integer; VAR NdTrn, NSm :Byte;
VAR PRep Boolea"i; VAR VName, ENaxte FileNamre; VAR VRc :VehicleRec;
VAR ERc EnvRec; VAR CC :Boolean; VAR LRC :Real; VAR LRF :Char;
VAR LtT Iayer2Train; VAR W]2A :Boolean; VAR RF1NAm : FileName;
VAR Xc, Y5c, Hdg :Integer; VAR PP Text; VAR WR, SnSTM Boolean);

VAR
Resp :Char;
Temp :Char;

Procedure Initialize(VAR ER: EnvRec; VAR VR VehicleRec;
ERF, VRF, RFN :FileName; VAR NS :Byte; VAR PP Text);

V AR
FileStr :String;
Runfile :File of RunRec;
Envfile :File of EnvRec;
Vebpile :File of VehicleRec;
Resp : Char;
RespStr :String;

BEGIN
ClrScr; {Prep screen}
Assign(EnvFile,ERF + '.env');
Reset (Env~ie);
Read(EnvFile,ER);
Close(EnvFile);
Assign(VehFile,VRF + '.veh');
Reset(VehFile);
Read(VehFile,VR);
NS :=VR.NSum;
VR.VehNaxre :=VRF, {Ensure VRec filename is correct}
Close(VehFile);
Assign(RF,RFN + 'rn)
SetTextBuf (RF,Buff);
ReWrite(RF);

END; {Procedure iriitialize.
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BEGI]N
WlriteLnl ( 'ENTER VEHICLE FILE NLAE')
ReadLn(WVanre);
wr IteLn (, 'ENTER ENVIROJNMENT FILE NAE');
ReadLn ( ENare);
REPEAT

WriteLl( 'WpTTE RUN DATA FIL? (YIN)');
ReadiLn (Resp) ;

UNTIL Resp In ('Y','y','N','n'];
IF Resp IN ('Y','y'] HE

BEGIN1
WriteLn( 'ENTER RUN DATA FILE NAME');
REadLxn ( RFlNm)
END

ELSE
WR :=Fa-lse;

Initialize (ERc, VRc, ENare , VNamre, RFNarrk , NSrn, RF);
REPEAT

WriteLn('E= ESTART TIME (1-8000)');
ReadLn(Strt);

UNTIL (Strt >= 1) AND (Strt <= 8000);
REPEAT

WriteLn('EN'ER STOP TIME (',Strt:4,'-8000)');
ReadLn(Stp);

UNTIL (Stp >= Strt) AND (Stp <= 8000);
ClrScr;
REPEAT

WriteLn ('SET INITIAL CONDITIONS - VEHICLE X, Y, & HEADING (Y/N)?');
ReadLn(Resp);

UNTIL Resp IN ('Y','y','N','n'];
IF Resio IN ['Y','y'] THEN

BEGIN
PvDEAT

Write('F'NTE STARTING X COXORDINATE (1-500)');
ReadLn (Xc);

UNTIL (Xc >= 1) AND (Xc <= 500);

Write('EN'ER STARTING Y COOJRDINATE (1-300)');
ReadLn(Yc);

UNTIL (Yc >-- 1) AND (Yc <= 300)1;
REPEAT

Write('Em'ER STARTING HEADING (1-360)');
ReadLn (Hdg);

UNTIL (Hdg >= 1) AND (Hdg <= 360);
END;

WriteLn ('ENABL-E SENSOR SHORT TERM MEMOJRY? (Y/N)');
ReadLn(Resp);

UNTIL Resp IN ['Y','y','N','n'I;
IF Resip IN ['Y?,'y') THEN

SnS'IN: True;
REPEAT
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v~riteLn('I= LAYERS TO TRAIN: (H)IDDEN, (D)RIVE, OR (B)OT'H');

ReadLni(Resp ;

CASE Resp OF
'H''h :LLT Hidden;
'D',d' :LtT :=Drive;
'B',b' :LtT Both;

MND; {CASE Resp...
REPEAT

WriteLn ('ENABLE INNMER-TAKE-ALL HIDDEN LAYER? (YIN)');
ReadLn (Teirp);

UNT'IL Temp~ IN ['','','' n
IF Tenp IN4 ['Y','y'] THE

WTA := True;
IF (Resp In ['H','h','B','b']) AND (WMA = False) THEN

REPEAT
WriteLn ('EI'flER NUMBER OF HIDDEN NODES TO~ TRAIN');
WriteLn('DURIN2G EACH TRAIN1IG EVENT (<= ',NSn:2,')');
ReadLn (NdTrn);

UNTIL (NdTrn <= NSm) AND (NdTrn >= 1)
ELSE

IF 1qTPA THEN
Nd~rrn : = 1;

WriteLn( 'CURRENJT AGE = ',Vrc.Ae:6,'. ENTER LENGTH OF CHILHOOD');
Readln(CHood);
REPEAT

ClrScr;
WriteLn( 'ENTER L.EAR;NIN)G RATE FUICTION TYPE: (L) INEAR, (D) ECAY, '

' (C)ONSTAN');

ReaaLn (LEF)
j11ILLRIF IN1 [ 'L' , '1', 'D' 'd' ,C', 'c'

LRC :=0.0;
IF LRF In [('C', 'c' I THE24

REPEAT
WriteLn('NTER LEARNING RATE CONSTANT (0.0 -1.0)');

ReadLn (LRC);
UNTIL (0. 0 <= LRC) And (LRC <= 1. 0);

REPEAT
ClrScr;
Writeln( 'ENABL BEHAVIOR SHAPING? (Y/N)');
Read~xn(Resp);

UtIML Resp IN1 'Y y, 'y' ,'N', 'n
IF Pesp IN ['Y','y'] T=1

BEGIN1
OpCond := True;
DMay :=100;
EMD

ELSE
OP~ond := False;

REPEAT
C LrScr;
Writ -Ln ( 'WRITE DETAILE RE-PORT'S? (Y/'N)');
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ReadLn(Resp);

IF Resp IN [ 'Y', 'y' ] THEN
PRep True

ELSE
P.Rep False;

END; { Procedure SetUp }

--------------------------------------------------------- }

Procedure DrawStims StimfData :StimuliData; CIr Word);

VAR
Loop :Byte;
OldColor :Word;

Procedure DrawStim ( X~x, YLxc Integer);

{Draw a cross centered at XLcoc, YLc}

CC21ST
L Integer =3;

Ben
Line(fDx(Xb~oc-L), Dy,'Thoo, Dx(XLoc+L), Dy(YLoc));
Line (Dx(XLc) , Dy (YLoo-L) , Dx (XLco) , Dy (Ytcc+L))

END; { Procedure DrawStim}

Procedure DrawNutrientStim (XLox, YLoc Integer; Rwrd :Boolean);
{Draws a smial square}

CMIST
D integer = 3;

Begi-n
Rectanolie(Dx(XLooc-D) ,Dy(YLc-$D) ,Dx(XLcc+D) ,Dy(Y~ox-D));
Li-ne (Dx (X-loc-D) , Dy (YL<Dc) , Dx(X~oc+D)) , Dy (YLcC))
IF Rwrd THEN

Line(Dx(X.o) ,Dy(YLcc-D) ,Dx(XLx ) ,Dy(YLo)c+D));

Begin
QldColor :=GetColor;
SetColor(Clr);
FOR Loop :=1 to Erec.StimNum DO

WITH StirnData(lcop] DO)
IF Nutrient THEN
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IF Pos THEN
DrawNutrientStim( StimX, StimY ,True)

ELSE
DrawNutrientStin( StimX, StimY, False)

EL7
DrawStnn( StimX, StimY);

SetColor (OldColor);
END; {Procedure DrawStims}

{----------------------------------------- ----------------- ----- }

Prcedure StartGraph;

VAR
Driver, Modie, Error :Integer;

Begin
Driver :=Detect;
Initgraph(Driver, Mokde, 'C:\TP');
Error := GraphResult;
IF Error <> GrOK THEN

Begin
ClrScr;
WriteLn ( 'CAL-L TO~ GRAPHICS FAMLED! CHECK IT OUT.')
WriteLn( 'REASON: ',GraphErrorMsg(Error));
END;

SetlntCoords (ERec .TX, ERec.TY, ERec.BX, ERec.BY);
DrawStinis (ERec . Stiziuli , Drw);

END;

--------------------------------------------- 

Procedure BuildStimLookup (vAR StDatArray :StmDatprray);

VAR
DatFile : File of DistAng;

i : Integer;

BEGIN
Assign(DatFile, 'StimDat.dat'); {Build stimrlus data look-up}

f table. Assume StimDat in }
Reset (DatFile); f current directory.}
i := 1; {StDatArray holds data}
WHILE i <= 5151 Do

BEGIN
Read(DatFile, Dat);
StDatArray[i].Dist := Dat.Dist;
StDatArray~i].MIjg :t-Dat.Ang;
Inc (i);
END; {WHILE ij

Close(DatFile);
END; {Procedure BuildStimooklp
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Procedure UpDateStimDat (VAR StmArray StimArray);

VAR
Dx,Dxs,Dy,Dys : Integer;
DistScaler : Real;
Loop : Byte;
ArrayIndex,,.gle : Integer;
ScaleX : Boolean;

BEGIN
WITH ERec DO

BEGIN
FOR Loop 1 TO StimNum DO {Up date stinulus data since }

BEGIN { last move
Dx = Stinuli[Loop] .StimX - X; {Find dIE frcn current location}
Dy Stimuli [ Loop ].StimY - Y; { to stimulus.
DistScaler := 1.0; {Set scale value to default }
IF (Abs(Dx) > 100) OR (Abs(Dy) > 100) THEN {Scale to Dx/Dy value}
DistScaler := Greater(Abs (Dx) ,Abs (Dy) ) /100; {Ccapute scale value

DxS Abs(ROUND(Dx/DistScaler)); {Scale dist to 100 or less }
DyS Abs(ROUND(Dy/DistScaler));
ArrayIndex := (Greater(DxS,DyS) * (Greater(DxS,DyS)+l))

DIV 2 + 1 + (Lesser(DxS,DyS));
StimuliArray[Loop].Ldist StinuiliArray[Loop].Dist;
StirmrliArray[Loop] .Dist = ROUND(Abs(DistScaler *

StimDatArray (ArrayIndex] Dist));
Angle := StimDatArray[ArrayIndex] .Ang;

{Convert stored angle to actual relative to horz line
StinuliArray[Loop] .Ang := GetAngle(Dx,Dy,Angle);

END; {FOR Loop
END; {WITH ERec}

END; {Procedure UpDateStimDat}

----------------------------------------------

Function SigmoidResp2 (InSum : Real) : Real;
{ 0 < SigmoidResp < 1 FOR 0 < Insum < +Big}

BEGIN
IF InSum > 10 THEN

InSum := 10;
SigmidResp2 := 2 * (I / (I + E,,(- InSum)/10)) - 1;

END;

{ -----------------------------------------

Procedure SensorOut(Tm : Integer; VAR SnOut : SenOutArray;
VAR SOut : SOA; SnSTM : Boolean);

VAR
AngIndex : Integer; {Angle of sensor to stimulus 4
InvSqr : Real; {Inverse square of distance }
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Stiml~nt :Longint; {Stnnulus intensity at one unit distancey
SenGain :Real; {Sen~or gain based on FOV Response }
SenFrqRes :Real; {Frequency response of sensor to stim }
StevensX :Real; {Stevens law exponent}
Stevens2X :Real; {Stevens law exponent FOR deltas}
Enrgln :Real; {Effective energy input to sensor}
Temp Longlnt;
Count :Byte;
TempArray :Arrayti. .4] of Real;
TenpReal. Real;

BEGIN
WITH VRec, ERec DO

BEGIN
FOR count :=1 to SenNamn DO {Put Sensor output at t-1

TempArray[Count]:= -Sncut(Count]; fin the TempArray
FOR Loop 1 TO~ SenNun DO

BEGIN
FOR i 1 TO~ StimNinn DO

BEGIN
Angl~ndex :=StinuliArray~i].Ang - Hdg -

SenRecs (Loop] .SAngle;
REPEAT

IF (Anglndex >= 360) OR (Anglndex < 0) THEN
IF Anglndex >= 360 THEN {Make 0 <= Anglndex < 3601

Anglndex Anglndex - 360
ELSE

Anglndex 360 + Anglndex;
UN='I (Anglndex < 360) And (Angl~ndex >-- 0);
IF Anglndex > 180 THEN

Anglndex: -(360 - Anglndex);
Temp StinuliArray[i].dist;
IF Temp =0 THEN

Tempw 1;
InvSqr :=1 / Sqr(Temp);
Stirnlnt Stimuli(i].StimEnrg;
SenGain :=SenRecs (Loop] .Curve[Abs (Anglndex)];
SenFrqRes :=S H R[Ord(Stiuli[i].Stimlus),

Ord(SenRecs[Loop] .SResp)];
StevensX SenRecs(Loop].SenK;
Stevens2X SenRecs(Loopj.Sen2K;
Enrgln InvSqr * Stimrli(i].StimEnrg* SenGain*

SenFrqres;
SnOut[Loop] :=SnOut[Loop] + Enrgln;

END; {FOR i}
END; { FOR Loop}I
FOR i := I to (2 * SenNum) DO

BEGIN
IF i <= Sen Num THEN
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BEGIN
SnOut[i] : X to theY(SnOut[i],StevensX) / 8;

{Normal responsel
IF SnOut[i] > 1 THEN

SnOut~i] :=1 {CONSTrain output O<Out<1}
END

ELSE
BEGIN
TenrpRea1 :SnOut[(i -Sen Num)] -TemrpArray[(i -Sen Num)];
Sncut[i] X-to the_Y(TezipReal,Stevens2X) / 8;

{Sensor delta resp}
IF SnOut[i] > 1 THEN

SnOut [i] := 1 {CONSTrain output 0<Out<1 }
END;

END; {FOR i}

IF SnStT4 THEN {DO Sensor Shrt Thm Mem
FOR Loop := 1 to (2 * SenNutn) DO {Decay outputs IF rapid}

WITH SOut [ Loop ] DO f negative change occured}
BEGIN f Simulates ST rrErrry }
IF (Tmn - Time) <= 5 THEN

TenTpReal := Out *SENDecay [(Tm - Tiim)];
{Decayed previous outp}

IF TempReal > SnOut [Loop] THEN
SnOut [Loop] := TempReal

ELSE
BEGIN
Tine :=T;
Out :=SnOut[Loop];

END; {EISE}
END; {WITH SOut[(Loop]..

END; {WITH}
END; {Procedure Sensor~utj
f-----------------------------------------------}

Function SigrmidResp1(InSum : Real) :Real;
{ 0 < SiginoidResp2 < 1 FOR -Big < InSum < +Big}

VAR
Temp :real;

BEGIN
IF InSumn> 10 THEN

Insum :=10
ELSE

IF InSum < -10 THEN
InSum :=-10;

Terrp :=Exp(- Insum); {Atteript to avoid 8087 stack ovefflcw
Temp :=Temp + 1;
Temp I 1/Temp;
SigrroidResp1 := Temp;

END;
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Procedure Matrixi (SO : SenOutArray; ST1 : SenTlWts; VAR TOneOut : TlOut);

{Assumes calling program has defined Tl Out : array[ i..4,1..20] of Single}

VAR
Sen, Ti, loop : Byte;
Temp : Real;

BEGIN
WITH VRec DO
BEGIN
FOR Ti := 1 to Nodesum DO {Initialize Ti }

Ti Out(Tl] := 0;
FOR Ti := 1 to NodeSum DO {Matrix nuitiply }

BEGIN
Temp := 0;
FOR Sen := 1 to (2 * Sen Num) DO

Temp := Temp + (SO[SenT * Stl[Sen,Tl]);
TOneOut[Tl] := Temp
END;

END;
END; {Procedure Matrixl}

f------------------------------------------------------------

Procedure TIOutResp( NS : Byte; VAR T Out : TiOut; VAR TIO T 0 A;
WTA : Boolean);

VAR
Loop : Byte;
Tenp, Ternp2 : Real;

BEGIN
{>}Teup2 0.0;

FOR Loop 1 to NS DO
BEGIN
Temp :=TOut[Loop];
TOut[Loop] := SigmoidRespl(Temp);

{>>} IF T ut[Loop] > Temp2 THEN
Temp2 := T Out[Loop];

WITH TlO[Loop] DO {Check Ti output FOR ST iemory decay firing}
BEGIN
IF (T - Time) <= 10 THEN

Temp := Out * MenDecay[(T - Time)];
{Decayed previous output }

IF Temp > TOut[Loop] THEN {Put Decay fran T-I in T-Out}
T_Out[Loop] Temp

EISE
BEGIN
Time := T; {Reset Time to current T }
Out :=T Out[Loop];
END;
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END; {WITH TYJ[Loop] }
END; {FOR Loop = 1...}

IF WrA THEN
FOR Loop := 1 to NS DO {Winner take all!}

IF Temp2 > T Out[Loop] THEN
BEGIN
T Out[Loop] := 0.2;
TiO[Loop].Time :=T;
TlO[Loop].Out 0.2;
END;

IF Test = true THEN
ReadLn;

END; {Procedure TlOut}

- ------------------------------------

Procedure Matrix2(MEneOut TlOut; T1T2 TIT2Wts; VAR TN Jut : T2Out);

VAR
T1,T2 : Byte;
Temp : Real;

BEGIN
WITH Vrec DO
BEGIN
FOR T2 := 1 to 3 DO

T2 Out[T2] := 0.0;
FOR T2 :=i to 3 DO

BEGIN
Temp 0.0;
FOR Ti 1 to NodeSun DO

Terp Temp + TOneOut[Tl] * Ti T2 Wts[T1,T2];
TTvcOut[T2] := Temp;
END; {FOR T2 }

Tlfo~ut[T2] := Temp;
ED; {WITH VRec }

END; {Procedure Matrix2 }

{ --------------- ------------------- }

Procedure T2OutResp(VAR TI)oOut : T2Out; VAR T20 : T2 0 A);

VAR
Loop : Byte;
WinNum : Word;
ETimre : Integer;
Temp, TempRem : Real;
AnnealFac : Real;

................ 1.............4......... .............
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Function Pick(Total : Word): Word;
{RanDmly selects a number from 1 to Total}

BEGIN
RanDOmize;
Pick := RanDOm(Total) + 1; {ShIFt range to 1..Total}
END; { (Not 0..(Total-1)) }

Function Decay(ET, ChldHood : Integer) : Real;
{Exponential decay from 1 to 0 over elapsed tine ET}

BEGIN
IF ChildHood = 0 THEN

Decay 0
ELSE

Decay : (Exp( (-ET * 4)/ChldHood) );{At ET = chldhood, decay = 0.018}
END;

BEGIN
ETime := T - Start; {Elapsed time
AnnealFac:= Decay(ETime, Childhood); {Calc ranDOm move factor}

FOR Loop 1 to 3 DO
BEGIN
Temp : P=TIOut[Loop;
Temp := (1 - AnneaiLFac) * SigmoidRespl(Tenp);
IF ChildHood > ETime THEN

TIWbOut[Loop] := Temp + RanDOm * (1 - Temp) / 2
ELSE {FOR Loop.. }

TBOut[Loop] := SigmoidRespl (TI\ocut(Loop] );
END; {FOR Loop... }

Temp := Frac((ETime) / 20); {Detect 20 unit time intvl}
IF (Temp = 0.0) AND (ETime <= ChildHood) THEN

BEGIN
WinNumn := Pick(3); {Select winner T2 node}
TempRem := (1 - TIWcOut[WinNum]) * RanDOm;

{Caripute FORcing func}
t (WinNum] := TI ut[WinNum] + TempRem;

END; {IF Temp = .. }
FOR Loop := 1 to 3 DO

WITH T20[Loop] DO {Check T1 output FOR ST memory decay firing}
BEGIN
IF T = 1 THEN

BEGIN
Out := 0.0;
Time := 1;
END;

IF ((T - Time) <= 10) AND (Time <> 1) THEN
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Temp Out * MemDecay[ (T - Time) ]{Decayed previous output}
ELSE

Temp 0.0;
IT Temp > Twout[Loop] THEN {Store decay fran T-1 }

Tvwtwt[Loop: Temp
ELSE

BEGIN
Time T; {Reset Time to current T}
Out TIwodut(Loop];
END;

END; {WITH T20[Loop I}
END; {Procedure T2OutResp}

Procedure Move (T20 : T2Out; VAR NewX, NewY, LastX, LastY,
NewHdg, LastHdg, MDist, Enrg : Integer);

VAR
D, MRadn : Real; {Distance moved }
NX, NY ,NH : Integer; {New coordinates and heading}
CurvRad : Real; {Move arc radius }
AspRatio : Real;
LX, LY, LH : Integer;
Temp : Real;
ETime : Word; {Elapsed time fran start}

:::. :::::. ::::::.::::::::.:.::::::::::::::::::::::::::...• ........ ...

Procedure PlotPts(Radius Real; VAR XPos, YPos, LastX, LastY : Integer;
Aspect, MovRadn : Real; VAR Head, LastHdg : Integer);

VAR
MoveDir : (Straight, Turn);
AspRatio : Real;
TRec : TrackRec;
TFile : TrackFile;
Radian, RadDir : Real;
Loop : Byte;
CenX, CenY : Integer;
MaxX, IlaxY, MinX, MinY : Integer;

BEGI1
Radian 180 / (Pi);
LastX := XPos; {Store old X,Y, Hdg FOR erase
LastY YPos;
LastHdg := Head;
MaxX :- ERec.BX;
MinX := ERec.TX;
MaxY := ERec.TY;
MinY :- ERec. BY;
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RinY ERec.B3Y;

IF Radius 0 THEN
moveDir Straight

ELSE
MoveDir =Turn;

RadDir Pi / 2; {Direction of radius FOR if t t urn
IF MovRadn < 0 THEN

RadDir := -RadDir; { Direction of radius FOR rt turn).

WTITH TRec DO)
BEGIN
CA~SE MoveDir OF

Straight
BEGIN
Dist :=MavRadn;
NewX :=Round(Dist * Cos (Head / Radian) + Lastx);
NewY Round(Dist * Sin(Head / Radian) + LastY);
Tine T;
NewHdg =Head;

END;

Turn
BEGIN
Tine :=T; {Store tine }
Dist :=MovRacin * Radius;
CenX :=Round(Radius *

Cos (Head/Radian + RadDir) + LastX); {Find. center FOR}
CenY := Round(Radius *

Sin (Head/Radian + RadDir) + tastY); I{track arc}
NewX :=Round (Radius * Cos (-RadDir + Head/Radian +MovRadn)

+ CenX); {Calc new coords ).
NewY =Round (Radius * Sin (-RadDir + Head/Radian + mavRadn)

+ CenY);
NewHdg =Round (Head + Movradn * Radian); {New Heading deg I
IF NewHdg >-- 360 THEN JO <= Head <= 360.

NewHdg :=NewHdg - 360
ELSE

IF NewHdg <= -360 THEN
NewHdg := NewHdg + 360;

END; {CASE OF Turn.
END; {CASE}
IF NewX > MaxX THEN {Keep Vehicle on screen.

NewX := NewX - MaxX
ELSE

IF NewX < MinX THEN
NewX := NewX +r MaxX;

IF NeWY > MaxY THEN
NewY := NewY - MaxY

ELSE
IF NewY < MinY THEN
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NewY :=NewY + MaxY;
XPos NewX; {Pass new veh coords back).
YPos NewY;
Head NewHdg; {Pass new heading back }
END; {WITH TRec I

END; {Procedure PlotPts}

BEGIN
NX NewX;
NY NewY;
NH NewHdg;
LX LastX;
LY LastY;
LH LaztHdg;
AspRatio 1.0;

Teirp :=0.0;

FOR Loop 1 to 3 DO) {Find largest output).
IF T20[Loop] > Tenp THEN

TEEr : T2O[Loop];

IF T20[2] = Temip THEN
BEGIN {Go Straight.
D Round(10 * T20[2]1);
MRadn :=D; f{Move distance
CurvRad :=0;

ELSE
IF T20(1] = Tenp THEN {Turn leftl

BEGIN
D :=10 * T20[1];
CurvRad :=5 * (10 - 10 *(720[l] -T20[3]));{Turn radius.
IF CurvRad = 0 THEN

CurvRad :=0.1;
MRadn :=D / CurvRad; {Move angle in radian.
END

ELSE
BEGIN f{Turn right).
D :=10 * T20[3];
CurvRad :=5 * (10 - 10 *(T20[3] - T20[1]));{Turn radius).
IF CurvRad = 0 THEN

CurvRad := 0.1;
MRadn :=-D / CurvRad; f4ave angle I.
END;

PlotPts (CurvRad, NX ,NY, LX ,LY,AspRatio, MRadn, NH, LH);
IF NH >= 360 THEN

NH := Hdg - 360
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ELSE
IF NH <= -360 THEN

NH Hdg + 360;
NewHdg NH;
NewX NX;
NewY NY;
LastX LX;
LastY LY;
LastHdg LH;
MDist Round(D) Div 2;
Enrg Enrg - MDist;

END; { Procedure Move }

f{------------- - ------------------ -- ------ ---- 1

Procedure DrawMov(VX, VY, VH : Integer);

::::::::::::::::::::::::::::::::::::::::::....................::::

Procedure DrawVeh(PX,PY,PH : Integer; Clr : Word);

CONST
Size : Integer = 3;

VAR
NumPts : Word; {Number of PolyPoints}
OldClr : Word;
VehPoly : Array(l..5] of PointType;

Procedure DrawVector (PX, PY,PH : Integer);
{Draw a vector at PX,PY pointing PH degrees}

CONST
D = 15;

VAR
ENDX, ENDY : Integer;
Radian : Real;

Begin
Radian : 180 / (Pi);
ENDX :- Dx(Round(D * Cos(PH/Radian) + PX));
ENDY :- Dy(Round(D * Sin(PH/Radian) + PY));
Line(Dx(PX),Dy(PY),ENDX, ENDY);

END; {Procedure DrawVector}

..............--........ ...... ....
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Begin
VehPoly[1].X (Dx(PX+Size));
VehPoly[1].Y (Dy(PY));
V%,ehPoly[2].X (Dx(PX));
VehPoly[2].Y (Dy(PY+Size));
VehPoly[3].X (Dx(PX-Sizefl;
VehPoly[3].Y (Dy(PY));
VehPoly[4].X (Dx(PX));
VehPoly[4].Y (Dy(PY-Sizefl;
VehPoly[5].X (Dx(PX+Size));
VehPoly[5].Y (Dy(PY));
NumPts 5;
OldClr GetColor;
SetColor(Clr);
DrawPoly (NuinPts, VehPoly);
DrawVector(PX,PY,PH);
SetColor(OldClr);

END; { Prccedure DrawVeh}

Begin
IF T <C> Start THEN

DrawVeh(OldX,OldY,OldHdg,Erase);
DrawVeh(VX,VY,VH,Drw);
DrawStirm(ERec .Stixtali, Drw); {Redraw sthiui}

END; {Procedure Drawtsbv}

f------------------------------------------------1

Procedure NcdeWtReport (VAR Dev : Text; ST1Wts :SenTlWts; T1T2Wt :T1 r2Wts;
Tinre :Word);

VAR
Loop, i :Byte;

BEGIIN {lst, print sensor to Ti wts)
FOR Loon : 1 to 80 DO

Write(Dev, '-');
Writein(Dev);
W~clte-Ln (Dev,' NODE CONNECTION WEIGHTS AT TINE = ', TiIT:8);
WriteLn(Dev);
WriteLn (Dev,' SENSOR TOD HIDDEN LAYER WEIGHTS');
WriteLn (Dev);
FOR i :=0 to NodeSum DO

BEGINI
IF i > 0 THEN

Write(Dev,i:2,' : ')
ELSE

BEGIN
Write(Dev,' ');
FOR Loop := 1 to 2*VRec.SenNum DO

B3EGIN
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Write(Dev,Loop:8);
END; {FOR Loop ... I

WriteLn ( Dev);
END; {ELSE.. }

IF i > 0 THEN
BEGIN
FOR Loop := 1 to 2*VRec.Sen Num DO

Write(Dev,STiWts[Loop,i] :8:3);
WriteLn(Dev);
END; {FOR i... }

END; {FOR i :=..}
WriteLn(Dev);

{Now print Ti to T2 weights}
WriteLn;
WriteLn(Dev,' HIDDEN LAYER TO DRIVE WEIGHTS');
WriteLn(Dev);
FOR i := 0 to NodeSum DO

BEGIN
IF i > 0 THEN

Write(Dev,i:2,' :
ELSE

BEGIN
Write(Dev,' ');
FOR Loop := 1 to 3 DO

BEGIN
Write(Dev,Loop:8);
END; {FOR Loop ... Q

WriteLn(Devj;
END; {ELSE..}

IF i > 0 THEN
BEGIN
FOR Loop := 1 to 3 DO

Write(Dev,T1T2Wt[i,Loop] :8:3);
WriteLn(Dev);
END; {FOR i... }

END; {FOR i :=..}
FOR Loop := 1 to 80 DO

Write(Dev, '-');
WriteLn(Dev);
WriteLn(Dev);

END; {Procedure NodeWtReport }

{ --------------------------------------------------------------------

Procedure Report;

VAR
Resp : Char;
Loop : Byte;
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BEGIN
CloseGraph;
WriteLn( 'Enter: "A" FOR all data');
WriteLn ("'S" FOR sensor output data');
WriteLn(''1" FOR Ti output data');
WriteLn(,"2" FOR T2 output data');
ReadLn(Resp);
WIT VRec £0

BEGIN
IF (Resp in ('A','a','S','s']) THEN

BEGIN
ClrScr;
WriteLn('Tim = ',T:5,' Last Train Event ',LastRewaid:5,

'Childhood = ',Childhoxi:5);
WriteLn ('Energy =',VRec .VehEnerqy: 5);
FOR Loop := I to (2 * Sen Nun) DO

WriteLn('Output of Sensor # ',Loop:l,'
Sen OuttLoop]:2:4);

ReadLn;
END; {IF S}

IF (Resp in f'''''')THEN
BEGIN
CirScr;
Loop := 1;
WHIL Loop <= (2 * (NodeSum div 2)) £0

BEGIN
WriteLn('Output of TI node ',Loop:2,' =',TiOut(Loop]:2:4,

','Output of Ti node ',(Loops-1):2,' -.-
TiOut[Loop-1]:2:4);

Loop := Loop + 2;
END;

IF NcxieSun > (2 * Nodesum Div 2) THEN
WriteLn('Output of Ti node ',NodeSui:2,

' =',Ti Out[NcdeSumI:2:4);
ReadLn;
END; {IF Resp 1}

IF (Resp in f'A','a','2']) THEN
BEGIN
ClrScr;
FOR Loop := I to 3 DO

WriteLn('Output of T2 node ',Loop:i,'
"T Out(LoopJ:2:4);

NodeWtReport(OutPut,SenTiWts,TiT2_Wts,T);
Read~zn;
END; {IF Resp 2)

END; {WITH VRec}
StartGraph;
END; { Prccedure Report }

--------------------- ----- ------------ ___ ___
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Procedure Beep (Hz : Wordt);

BEGIN
Sound(Hz);
Delay(50);
NoSound;

END;

f--------.------------------------------------..

Procedure FORage (SDA : StimArray; MDist, Tine, MxEnrg : Integer;
VAR Enrg, Rwrd, Pnish, IReward Integer);

VAR
PosOdds : Real;
NegOdds : Real;
Dst : Integer;
Temp : Real;
Sigma : Real;
Loop : Byte;
Temp2 : Integer;

Function Probability(D : Integer) Real;

CONST
Prob : Array(0. .25] of real = (1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,
1.0,0.755,0.538,0.365,0.238,0.152,0.095,0.059,0.036,0.022,0.013,0.008,
0.005,0.003,0.002,0.001);

BEGIN
Probability := Prob[D Div 2]/2;

END;
{ ::::::::::::.............. :......:...............................

BEGIN
PosOdds 0;
NegOdds := 0;
Sigma 2.0; {Distribution parameter (not true SD)}
Rwrd := 0;
FOR Loop := 1 to ERec.StimNum DO

WIH SDA[Loop] DO
BEGIN
Dst := Dist;
IF ERec.Stimuli[Loop] .Nutrient THEN

IF Dst <= 50 THEN
IF ERec.Stimli[Loop].Pos THEN

PosOdds := PosOdds + Probability(Dst)
LSE

NegOdds := NegOdds + Probability(Dst);
END; {WT SDA ... }
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FOR i := 1 to MDist DO
BEGIN
RanDOmize;
Temp := RanDm;
IF (Ten < Pos~dds) THEN

BEGIN
Inc(Rwrd);
LReward = Time
END; {IF Odds..}

IF (Temp < Neg~dds) THEN
BEGIN
Inc(Pnish);
LReward = Time;
END;

END; {FOR i ... }

Temp2 := Enrg + (50 * Rwrd) - (50 * Pnish);
IF Temp2 > MxEnrg THEN

Temp2 := MxEnrg
ELSE

IF Temp2 < -30000 THEN
Temp2 := -30000;

Enrg := Temp2;
END; {Procedure FORage}

Procedure Learn(NodeTrainNum,CHood,Tm,Rwrd,Pnish Integer;TIO : TlOut;
SO : SenOutArray; T20 : T2Out; VAR STWts : SenTlWts; VAR TIWts : TIT2Wts;
VAR PosTrnNum, Neg'TnNum : Word; PR : Boolean; FnCd : Char; CnR : Real;

LtT : Layer2Train);
{Implements non-supervised learning algorithm}

VAR
Delta, Deltal : Real;
Node, Factor : Integer;
Buff, i, j, k : Integer;
Temp, Temp2 : Real;
Pick,TempPick : Set of Byte;
Loop, Index : Byte;
Temp3 : Real;

.........................::::::::..............................::

Function LearnRate(FnCode : Char; Time, CH : Integer; CR : Real): Real;

CONST
k = 10;

VAR
Temp : Real;
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Function Decay(ET, ChldHood : Integer) : Real;
{Exponential decay frcm 1 to 0 over elapsed time ET}

VAR
Tenp : LongInt;

BEGIN
Tenp: -ET * 4;
IF ET > ChldHood THEN

Decay 0.1
ELSE

Decay (Exp(Teup/ChldHood));{At ET = chldhood, decay = 0.018}
END;

Function Linear (ET, Chldhood : Integer) : Real;

BEGIN
IF ET > Chldhood THEN

Linear := 0.1
ELSE

Linear := 1 - Et/Chldhood;
END;

................................... :::::::::::::.••........''':.......

Function CONSTant (Con : Real): Real;

BEGIN
CONSTant := Con;

END;

BEGIN
CASE FnCode OF

L','i' :Tenp := Linear(Time, CH)/k;
Temp .= Decay(Tire, CH)/k;

'C','c' :Temp :=CONSTant(CR);
END; {CASE FnCode}
LearnRate := Temp;

END; {Function LearnRate}

{ : ~ .....:: . . : ..: ':". .... . * *.:: : : : : :: : : : : :: : : : ::......**.* * . *. . .

BEGIN
IF (Rwrd <> 0) OR (Pnish <> 0) THEN

BEGIN
Pick :- [ ];
TerpPick := [];
i
Temp3 := 0;
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IF (LtT = Hidden) OR (LtT = Both) THEN
BEGIN
FOR i := 1 to NodeTrainNum DO

BEGIN
Index 1;
FOR Loop := I to NodeSum DO {Find largest outputs of TI}

IF (TiO[Loop] >= TIO[Index]) AND (Not (Loop In Pick)) THEN
Index := Loop;

TempPick := [Index]; {Put largest num IDs in Pick}
Pick := Pick + TempPick;
END; {FOR i :=..}

i := 1;
Temp := 0.0;
FOR k 1 to 2 * VRec.Sen Num DO

Temp = Temp + SO[k]; {Caldulate total input to Hidden layer}
IF Temp = 0 THEN

Temp 0.01;

FOR Loop := 1 to NodeSum DO { train nodes in pick
IF Loop IN Pick THEN

BEGIN
Temp3 := 0;
FOR j := 1 to (2 * VRec.Sen Numn) DO

Temp3 := Temp3 + Abs(SIWts[j,Loop]);
IF Temp3 <> 0 THEN {DOn't train IF ALL wts = 0}

FOR i := 1 to (2 * VRec.SenNum) DO
BEGIN
Delta : ((LearnRate(FnCd,1n,CHood,CnR) *
(Rwrd+Prish)) * ((SO[i] / Temp) -

(STWts [i, Loop]));
STts[i,Loop] := STts[i,Loop] + Delta;
END; {FOR Loop.. }

END; {IF Loop..}
END; {IF LtT.. }

IF (LtT = Both) OR (LtT = Drive) THEN
BEGIN
Temp := 0;
FOR Loop 1 to NodeSum DO

Temp := Temp + TlO[Loop]; {Total input to drive layer
k 0;
Temp2 := 0;
FOR Loop := 1 to 3 DO

IF T20[Loop] > Temp2 THEN
BEGIN
Temp2 :=T20[Loop];
k = Loop; {Node WITH greatest output
END; {IF T2..}

Temp2 := 0;
FOR Loop := 1 to NodeSum DO

Temp2 :- Temp2 + TIwts[Loop,k];
IF Temp2 <> 0 THEN {DOn't Train IF ALL wts = 0)
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BEGIN
FOR i 1= to NodeSum DO

BEGIN
Deltal :=((LearnRate (FnCd, fln,CHood,CnR) *(Rwrd-Pniish))

* ((TiOti] / Temp) -(TIWts(i,k])));

TIWts(i,k] :=TIWts~i,k] + Deltal;
END; {FOR i..}

END; {IF Temrp2j
END; {IF LtT =..

END; {IF Reward.}
IF Rwrd > 0 THEN

BEGIN
Inc (PosTrnNun);
Beep(2500);

IF pnish > 0 THEN
BEGIN
Inc(NegTrnNum);
Beep(400);
END;

IF (Frac(Tm/nhl) = 0.0) AND (PR) THEN
NodeWtReport (RnF1 , S'Wts ,TIWts, 'Im); {Print new node wts }

END; {Procedure Lean]

I{----------- --- -------- -------- -----

Procedure Stats (VAR Dev :Text; yR :VehicleRec;
Pos~rnNum, NegTrnNum : Word; VAR DPrrnNm, DNrrnNmun : Word);

CONST
SType Array[0..5] of String(3] =('R','G','B','Hzl','Hz2','Hz3');

VAR
LCop Byte;
ETijrw Longlnt; {Elapsed tine in run
Count Word;

BEGIN
Etiue T
WITH yR DO

BEGIN
IF (Frac((Erine-I) /1000) =0) THEN

BEGIN
WriteLn(Dev);
Writeln (Dev,' Tine TPTE NPTE TNTIE NNTE Energy');
WriteLn (Dev);
END;

IF (Frac(ETine / 100) = 0) OR (T = Stop) THEN
BEGIN
writeLn(Dev,ETine:6,' ',PosTrnNtun:3,' 1, (Postit-um-

DPrrnNu): 3,' ' ,NegTrnNum:3,' I, (NegyrniNm -
DNItTn4m) :3,' 1 ,VehEnergy:7);

DPrrnNum n PosTrnNtnn;
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DNTrnNum := NegTrnNum;
END; {IF (Frac(...}

IF (Frac((ETimze)/1000) = 0.0) THEN
NodeWtReport(Dev,Sen T1 Wts,T! T2 Wts,ETime);

{Print Node wts every 1000 loops}

END; {WITH VR..}
END; {Procedure Stats}

{ ----------------------------------- }

Procedure Experiment(Time, LRwrd : Word; VR VehicleRec;
VAR CHood : Integer);

VAR
Temp, EDelta : Real;

BEGIN
Temp 0;
WITH VR DO

BEGIN
RanDOmize;
EDelta := MaxEnergy / 4;
IF (Tire > Chood) AND (Frac(Time/300) = 0.0) THEN

BEGIN
IF (Time - LRwrd) > 500 THEN

CHood := Time + 50;
Beep(50);
END; {IF Time..}

END; {WITH..
END; {Procedure Experinent}

Procedure WriteHeader(VAR Dev : Text;ER : EnvRec;VR : VehicleRec;LRF :
Char; LRC : Real; Start,Stop,TrnNode,CHood: Integer; LtT: Layer;

WTA: Boolean);

Tpe
Str3 = String[3];
MoArray = Array[l..12] of Str3;

CONST
Mo : MoArray = ('Jan','Feb','Mar','Apr','May','Jun','Jul','Aug',

'Sep', 'Oct', 'Nov', 'Dec' );
VAR

Month, Year, Day, Dok : Word;
Hr, Min, Sec, S100 : Word;

BEGIN
WITH ER, VR DO

BEGIN
GetDate (Year, Month, Day, Dwk);
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Write(Dev,'DATE : ',Day:2,' ',Mo[Month],' ',Year:4);
GetTirre(Hr,Min,Sec,S100);
WriteLn(Dev,' TIME ',Hr:2,':',Min:2);
WriteLn (0ev);
Write (Dev,'IENVflaJNM FILE :'EFNamre + er'
Writeln (0ev,' VEHICLE FILE :',VFName +

.veh');
WriteLn(Dev);
Writein(Dev,'START: ',Start:6,' STIOP: ',Stop:6,

ICHILDHOOD: ',CHood:6);

WriteLn (0ev);
WriteLn (0ev,' LEARNING FUNCT'ION = ', LRF);
IF LRF In ['C','c'] THEN

Write(Dev,' LEARNING RATE CONSTANT =,R::)

WriteLn (0ev);
Write (Dev, 'LAYER (S) TRAINED
IF (LUT = Hidden) THEN

Write(Dev, 'HIDDEN')
T7S

IF (LtT = DRIVE) THEN
Write(Dev, 'DRIVE')

ELS
Write(Dev, 'BCrH');

IF (LtT = Hidden) OR (LtT = Both) THEN
BEGIN
WriteLn (0ev,' # OF TRAINING NODES: ',TrnNode:2);
Write.n(Dev);
IF WI!A THEN

WriteLn (0ev,' WINNER-TAKE-ALL HIDDEN LAYER');
END;

WriteLn (Dev, 'VEHICLE AGE = ',Age:6,' VEHICLE ENERGY-
VehEnergy:5);

WriteLn(Dev);
END; {WITH ER, VR...}

END; {Procedure WriteHeader}

{-----------------------------------------}

Procedure InitArrays ( SN : Byte; VAR VR : VehicleRec;

VAR Stmrn~ray :StiniArray);

VAR
Loop :Byte;

BEGIN
WITH VR DO

BEGIN
FOR Loop :=1 to 8 DO

BEGIN
SnOutArray[Loop].Out :0.0;

SnOutArray[tnoop].Time :=0;
END;
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FOR Loop :=I to 20 DO
BEGIN
MIutArray[LoopJ.Out 0.0;
TOutArray [Loop].Tiue 0;

FOR Loop :=1 to 3 DO
BEGIN
T2OutArray[Loop].Tine 0;
T2Out.Array(Loop].Out 0.0;
END;

FOR Loop 1= to SN DO
BEGIN
StxnArray[Loop].Dist 0;
StmArrayf Loop]. Ldist 0;
END;

FOR i := 1 to 2*Sen Nm DO {Initialize Sensor output array}
SenOut[i] := 0;

FOR Loop := 1 to Sen Num DO {Detennine Sensor FOV response}
WITH SenRecs [LoopT- DO

LoadSENData (Cutoff ,MaxGain, CurveType, Curve);
{Calc FOV response FOR each sensor, put in SenRecs (Loop]J. curve}

END; {WITH VRDO..}
END; {Init.Arrays}

f{ - - - - -

Procedure WriteVFile (VAR VhRec: VehicleRec; VAR RF: Text; VNae:

FileNare);

VAR
VhFile VehFile;

BEGIN
REPEAT

WriteLn( 'SAVE CURRENTI VEHICLE? (YIN)');
ReadLn(Resp);

UNT1IL Resp IN [ 'Y', 'y', 'N','In']
IF Resp IN ['Y','y'] THEN

BEGIN
WriteLn ( ENT'ER VEHICLE FILE NAME. OLD NAME =,VhRec . VehName);
Readlh (VNare);
Assign(vhFile,VNaTe + '.Veh');
Rewrite(VhFile);
Write(VhFi-le,VhRec);
Close(VhFi-le);
END; {IF Resp..}

END; {Procedure WriteVFile}

f---------------------------- --------- }
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{ ****** MAWIN PROGRAM*****
BEGIN

REPEAT
ClrScr;
RanD~mize;
Test :=False; Video :=True; WnTkAll: False; WrtRep :=True;
Start 0; Stop :=0; ChildHood :=0; M~ay :=0; NodeTrain := 0;
SenSTM'4: False;
X RanD~in(500); {BEGINX}
Y RanDOrn(300); {BEGINY}
Hdg RanDon(360); {BEGINHdng}
setup (start, stop, ChildHood, NodeTrain, Nodesum, PrntRep, VFNanm , EENaIIe,
VRec, ERec,Op~ond,LRLC ,IRtF, L2T,WnffkAUl, RoFiNane, X, Y, Iig,FnFl ,WrtRep,

SenSITM);
OldX X
OldY Y
OldHdg Hdg;
InitArrays (ERec.Stinum, VRec, StinuliArray); { mit VRec arrays).

WITH ERec, VRec DO
BEGIN
BuildStimLookUp (StiinDatArray); {Build look-up table FOR

dist/angles.
PosTranNum n 0; DeltaPosTrnNum =0; { mit training recorder).
NegTrainNmi 0; DeltaNegTrnNum 0;
Trklndex := 1; f{Init Track buffer index).
Reward := 0; Punish :=0;
IastReward : = 0;
Sign := False;
UpDateStixn~at (StiuiiArray); {Calc sensor inputs fran Stim).
IF WrtRep THEN

BEGIN
WriteHeader (RnFl ,ERec ,VRec ,LRLF , RtC, Start ,Stop, NodeTrain,

ChildHood, L2T ,WnTkAll); {Print report header info}
NodeWtReport (RnFl ,SenTIWts ,Ti T2 Wts, 0); {PrintNodeweights).
END;

IF Video THEN {Display movement}
StartGraph;
{ ~ START VEHICLE MOVEME14T~

FOR T := Start TO0 Stop DO
BEGIN
SensorOut (T, Sen out, SnOutArray, SenS'IN); {Calc sensor output.
Matrixl (Sen Out, SenTiWts, T1_Out) ; {Propagate signals to Ti)
TlOutResp (NDGeSum, TiOuit, 'ICUtArray, WhTkAll);

{Calculate Ti output I.
Matrix2(Ti Out,TlT2_Wts,T2_Out);{Propogate signals to T2}
T2OutResp (T2_Out, T2OutArray)j; {Calculate 12 output I.
Move(T2_Out,k, Y, OldX,OldY,Hdg,OldHdg,MtiveDist,VehEnergy);

{Calculate and save ucxve
IF Video THEN

Draw~kw(X,Y,Hdg);
IF Keypressed THEN
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BEGIN
Resp := GetKey;
IF (Resp = '8') AND Opond THEN {Operant condiition}

Inc (Reward)
ELSE

IF (Resp = '2') AND Opond THEN
Inc (Punish)

ELSE
Report;

END;
UpDateStimDat (StinduiArray); {Calc sensor inputs frcxn Stim>
IF Not OpCond THEN

FCRage ( StinuliArray, MoveDist, T , MaxEnergy, VehEnergy, Reward,
Punish, astReward); {Was food found? }

Experinient (T, LastReward, VRec ,ChildHood);
{ Not successful? Change behavior}

IF (Reward > 0) OR (Punish > 0) THEN
Learn (NodeTrain, ChildHood, T,Reward, insh,Ti Out, SenOut,

T2_Out, Sen Ti Wts, TiT2_Wts ,PosTrainNum,Neg IrainNum,
PrntRep,LRtF, LRt1C; TT);

IF WrtRep THEN
Stats (RnFl , VRec , PosTrainNum, NegTrainNum, DeltaPosTrnNm,

DeltaNeqTrnNum);
Reward :=0; {Reset reward & punish).
Punish :=0;
Delay(IDMay); {Give time FOR shaping.
END; {FYJR T =Start ... I

Age := Age + stop;

T := Stop;
IF Video THEN {Shut Dfl'n graph nndej
BEGIN

RestoreCrtMode;
CloseGraph;

END; {WITH RECs).
WITH VRec DO

IF (Frac(T/i000) <> 0) AND WrtRep Then
NodeWtReport (RnFl ,SenTiWts ,Ti T2 Wts ,Stop);

{Print Node weights).
WriteVFile (VRec ,RnFl , VName); {Write final node wts }
WriteLn (RnF1, 'LAST VEHICLE NAME = ',VFNaxre + Ivh)
Write(RnF1,Chr( i2)); {Flush printer buffer}
Close(RnFl);
REPEAT

WriteLn'MAKE ANCTHE RUN? (YIN)'); {Continue?}
Readln(Cease);

UM ICease IN [ Y, y, IN','In']
UNTrIL Cease in ['N','n']; {Quit I}

END.
f{PPOGMN MAKERUN}
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